
Python	-	Install	and	Setup	-	Windows	10
A	brief	intro	to	installing	and	managing	the	Python	programming	language,	including	virtual	environments	for
development,	on	Windows	10.

Contents

Intro
Install	Python	3.x
Virtual	environment

venv	directory
activate	venv
deactivate	venv

Install	Pygame

Intro

There	are	various	install	and	support	options	for	the	Python	programming	language	depending	upon	your	chosen
operating	system.

Python	3.x	is	currently	preferable	for	development	unless	there	is	a	specific	need	to	support	legacy	code	from	Python
2.x.	There	are	various	download	and	install	options,	again	depending	upon	your	chosen	OS.

Standard	downloads	are	available	from	the	Python.org	website.	Install	options	are	available	for	most	OSs,	including
OS	X,	Windows,	Linux	&c.

Install	Python	3.x

We	can	start	our	Windows	10	install	by	downloading	the	latest	version	of	Python	3.x,	for	example	version	3.6.
Downloads	are	available	for	32	bit	and	64	bit	versions	of	Windows	10	at	the	following	URL,

Python	3.6.0

After	executing	this	install,	we	may	choose	various	options	including

documentation
pip
tcl/tk	and	IDLE
Python	test	suite
py	launcher...

We're	then	given	a	list	of	Advanced	Options,	which	we	may	select	depending	upon	our	system	setup	and
requirements.	For	example,	we	may	select	the	following	advanced	options,

Associate	files	with	Python
Create	shortcuts	for	installed	applications
Add	Python	to	environment	variables
Precompile	standard	library
Download	debugging	symbols

After	selecting	these	advanced	options,	Python	3.x	will	then	be	installed	on	our	local	host	system.

We	can	test	this	install	from	the	standard	Windows	console	as	follows,

python	--version

https://www.python.org/downloads/
https://www.python.org/downloads/release/python-360/


This	command	will	return	the	current	installed	version	for	Python,	e.g.

Python	3.6.0

We	can	then	use	Python's	 pip 	to	install	and	manage	any	required	packages,	where	applicable,	for	development.	We
can	check	it's	available	using	the	following	command,	e.g.

>	pip	--version
pip	9.0.1	from	c:\...	(python	3.6)

We	may	then	search	for	a	package	with	the	following	example	command,

>	pip	search	package_name

and	then	install	our	chosen	package,	e.g.

>	pip	install	package_name

Virtual	environment

With	Python,	we	can	create	programming	environments	with	the	tool	 Pyenv .	This	allows	us	to	create	any	required
virtual	environments	for	project	development.

A	virtual	environment	allows	us	to	isolate	a	project	&c.,	thereby	ensuring	each	project	has	its	own	set	of	dependencies.
This	helps	ensure	that	each	project	remains	isolated,	and	will	not	pollute	or	disrupt	another	project's	development.

We	can	also	use	virtual	environments	to	handle	development	of	different	versions,	and	easily	handle	required
dependencies.	This	can	be	particularly	useful	for	working	with	third-party	packages.

It's	often	best	to	use	a	specific	folder	for	adding	such	virtual	environments,	e.g.

>	mkdir	dev-environments
>	cd	dev-environments

Within	this	specific	directory,	we	can	then	start	to	create	our	Python	environments	for	application	development	and
testing.	e.g.

>	python	-m	venv	test_env

venv	directory

Each	virtual	environment	directory	on	Windows	10	includes	the	following	default	files	and	sub-directories,

Include 	sub-directory	-	compiles	required	packages
Lib 	sub-directory	-	includes	a	copy	of	the	Python	version,	e.g.	 python3.6 ,	by	default.	It	will	then	also	save

any	third-party	modules	added	to	the	project

Scripts 	sub-directory	-	includes	a	copy	of	the	Python	binary	along	with	Pip,	easy_install	&c.
pyvenv.cfg 	-	config	file	points	to	Python	install	used	to	generate	virtual	environment

These	files	and	sub-directories	help	to	isolate	a	given	project	from	the	broader	context	of	a	host	machine.	In	effect,	the
virtual	environment	is	isolated	from	the	system	files.

activate	venv

To	use	each	virtual	environment,	we'll	need	to	activate	it	using	the	following	type	of	command,	e.g.



>	win_env\Scripts\activate.bat

where	 win_env 	is	the	name	of	the	virtual	environment	to	activate.

This	command	is	using	the	provided	activate	script,	which	will	then	prefix	the	system	environment	with	the	name	of	the
new	virtual	environment,	e.g.

(win_env)	C:\Users\username\development\python-dev\dev-environments>

This	prefix	simply	informs	us	that	the	virtual	environment	is	now	active.	Any	apps	developed	within	this	environment
will	be	isolated,	and	use	their	own	installed	versions,	packages,	&c.

deactivate	venv

We	can	then	exit	the	current	virtual	environment	using	the	following	command,

>	deactivate

This	will	simply	exit	the	current	venv,	and	return	us	to	the	standard	command	line.

Install	PyGame

We	may	install	the	latest	version	of	Pygame	using	 pip ,

>	pip	install	pygame

and	then	briefly	test	this	install	as	follows,

>	python
>>>	import	pygame
>>>	pygame.init()	#pygame	will	open,	ready	for	display	window	&c.
>>>	pygame.display.set_mode((800,	600))	#	set	and	open	display	window	for	pygame...
>>>	raise	SystemExit	#	exit	current	pygame	window...

This	will	simply	import	the	installed	version	of	the	Pygame	module,	and	then	create	a	window	with	a	size	of	 800x600
pixels.	Then,	we	close	the	window	and	exit	the	Python	interpreter.


