
Python	-	Install	and	Setup	-	Mac	OS	X
A	brief	intro	to	installing	and	managing	the	Python	programming	language,	including	virtual	environments	for
development,	on	Mac	OS	X.

Contents

intro
OS	X	legacy
check	Xcode
Homebrew
Install	Python	3.x
Virtual	environment

venv	directory
activate	venv
deactivate	venv

Install	Pygame
brew 	dependencies
pip 	install

Intro

There	are	various	install	and	support	options	for	the	Python	programming	language	depending	upon	your	chosen
operating	system.

OS	X	currently	supports	a	legacy	default	install	of	Python	2.x	(e.g.	2.7.10	as	of	January	2017)	for	example.

However,	Python	3.x	is	currently	preferable	for	development	unless	there	is	a	specific	need	to	support	legacy	code
from	Python	2.x.	There	are	various	download	and	install	options,	again	depending	upon	your	chosen	OS.

To	correctly	install	and	setup	Python	3.x	for	use	with	virtual	environments	and	Pygame,	please	read	the	following
outline	and	instructions.

OS	X	legacy

OS	X	already	has	a	2.x	version	installed,

$	python	--version
Python	2.7.10	#	as	of	January	2017

We'll	now	need	to	install	and	configure	Python	for	version	3.x,	and	any	required	virtual	environments.

Check	Xcode

Xcode	is	Apple's	IDE	(Integrated	Development	Environment),	which	comprises	various	tools	for	general	software
development	on	OS	X.	We	can	check	the	current	state	of	Xcode	with	the	following	command,

$	xcode-select	-p
/Applications/Xcode.app/Contents/Developer	#	standard	return...

If	this	command	returns	an	error,	you'll	need	to	install	Xcode	from	the	OS	X	App	Store

Once	Xcode	is	successfully	installed,	we	may	then	need	to	install	the	separate	Command	Line	Tools	app,	e.g.

https://itunes.apple.com/us/app/xcode/id497799835?mt=12&ign-mpt=uo%3D2

xcode-select	--install

Homebrew

We	may	now	use	a	package	manager	to	install	and	maintain	Python	3.x.

For	OS	X,	we	can	use	the	Homebrew	package	manager.	Further	details	on	Homebrew	install	can	be	found	at	the
following	URL,

GitHub	-	Homebrew

After	successfully	setting	up	Homebrew,	we	can	check	the	current	install	version

$	brew	-v	#	alternative	command	is	`brew	--version`

We'll	also	add	the	Homebrew	directory	to	the	top	of	the	 PATH 	environment	variable.	This	helps	ensure	that
Homebrew	installations	will	then	be	called	instead	of	various	default	tools	OS	X	selects.

We'll	need	to	update	our	 ~/.bash_profile 	file.	Create	a	new	one	if	it	does	not	already	exist,

$	touch	~/.bash_profile

Then	edit	with	Nano	&c.,

$	nano	~/.bash_profile

and	add	the	following	to	this	document,

export	PATH=/usr/local/bin:$PATH

We	can	then	save	our	updates,	and	activate	them	using	the	following	terminal	command,

$	source	~/.bash_profile

We	can	then	check	Homebrew	is	OK	using	the	following	command,

$	brew	doctor

Now,	we're	ready	to	install	Python	3.x.

Install	Python	3.x

We	may	simply	start	by	searching	the	brew	packages	for	current	Python	options,

$	brew	search	python

We'll	then	install	the	 python3 	package,

$	brew	install	python3

This	will	install	the	latest	version	of	Python	3.x,	and	associated	tools,	which	include	 pip ,	 setuptools ,	and	 wheel .

We	can	check	the	installed	version	as	follows,

https://github.com/Homebrew/brew

$	python3	--version
Python	3.6.0	#	as	of	January	2017

We	can	then	use	Python's	 pip 	to	install	and	manage	any	required	packages	for	development.	For	example,

$	pip3	install	package_name

setuptools 	helps	with	packaging	Python	projects,	and	the	 wheel 	package	is	a	built-in	package	format	for	Python.
This	will	often	help	speed	up	software	production	by	reducing	the	need	to	repetitively	compile	code.

Virtual	environment

With	Python,	we	can	create	programming	environments	with	the	tool	 Pyenv .	This	allows	us	to	create	any	required
virtual	environments	for	project	development.

A	virtual	environment	allows	us	to	isolate	a	project	&c.,	thereby	ensuring	each	project	has	its	own	set	of	dependencies.
This	helps	ensure	that	each	project	remains	isolated,	and	will	not	pollute	or	disrupt	another	project's	development.

We	can	also	use	virtual	environments	to	handle	development	of	different	versions,	and	easily	handle	required
dependencies.	This	can	be	particularly	useful	for	working	with	third-party	packages.

It's	often	best	to	use	a	specific	folder	for	adding	such	virtual	environments,	e.g.

$	mkdir	dev-environments
$	cd	dev-environments

Within	this	specific	directory,	we	can	then	start	to	create	our	Python	environments	for	application	development	and
testing.	e.g.

$	pyvenv	test_env

or	for	Python	3.6	versions	onwards,	we	can	use	the	specific	command,

$	python3.6	-m	venv	test_env

venv	directory

Each	virtual	environment	directory	includes	the	following	default	files	and	sub-directories,

bin 	sub-directory	-	includes	a	copy	of	the	Python	binary	along	with	Pip,	easy_install	&c.
include 	sub-directory	-	compiles	required	packages
lib 	sub-directory	-	includes	a	copy	of	the	Python	version,	e.g.	 python3.6 ,	by	default.	It	will	then	also	save	any
third-party	modules	added	to	the	project
pyvenv.cfg 	-	config	file	points	to	Python	install	used	to	generate	virtual	environment

These	files	and	sub-directories	help	to	isolate	a	given	project	from	the	broader	context	of	a	host	machine.	In	effect,	the
virtual	environment	is	isolated	from	the	system	files.

activate	venv

To	use	each	virtual	environment,	we'll	need	to	activate	it	using	the	following	type	of	command,	e.g.

$	source	test_env/bin/activate

This	command	is	using	the	provided	activate	script,	which	will	then	prefix	the	system	bash	environment	with	the	name
of	the	new	virtual	environment,	e.g.

(test_env)	Your-MBPro:dev-environments	username$

This	prefix	simply	informs	us	that	the	virtual	environment	is	now	active.	Any	apps	developed	within	this	environment
will	be	isolated,	and	use	their	own	installed	versions,	packages,	&c.

deactivate	venv

We	can	then	exit	the	current	virtual	environment	using	the	following	command,

$	deactivate

This	will	simply	exit	the	current	venv,	and	return	us	to	the	standard	bash	command	line.

Install	Pygame

We	can	install	Pygame	using	Homebrew	and	Pip,	e.g.

brew 	dependencies

Check	and	install	the	following	dependencies	with	Homebrew,

$	brew	install	mercurial
$	brew	install	git
$	brew	install	hg	sdl	sdl_image	sdl_ttf
$	brew	install	sdl_mixer	portmidi

pip 	install

$	pip3	install	hg+http://bitbucket.org/pygame/pygame	#	if	installed	at	default	bash	
command	line
$	pip	install	hg+http://bitbucket.org/pygame/pygame	#	if	installed	in	virtual	
environment

This	will	then	install	 pygame-1.9.3.dev0 	for	the	current	system	or	virtual	environment.

We	can	then	simply	test	importing	this	module	in	Python,	e.g.

$	python	#	if	in	virtual	environment,	otherwise	use	standard	`python3.6`	&c.
>>>	import	pygame
>>>	pygame.init()	#pygame	will	open,	ready	for	display	window	&c.
>>>	pygame.display.set_mode((800,	600))	#	set	and	open	display	window	for	pygame...
>>>	raise	SystemExit	#	exit	current	pygame	window...

