
Pygame	-	Dev	Notes	-	Player	Health	-	Intro
Dr	Nick	Hayward

A	brief	intro	on	checking	and	recording	a	player's	health	with	Pygame.

Contents

Intro
Check	player's	health
Replace	mob	objects
Show	player's	health	-	status	bar
References
Demo

Intro

We	may	add	a	status	bar,	for	a	player's	health,	lives,	&c.	to	the	game	window,	and	then	dynamically	update	it	relative
to	a	defined	health	value.	For	example,	this	might	be	a	simple	percentage	that	we	decrement	for	each	collision.

Check	player's	health

Our	current	game	only	gives	a	player	one	chance	to	shoot	and	destroy	any	advancing	mob	objects	before	a	single	hit
ends	the	game.

A	single	hit	may	make	the	game	more	challenging,	but	it	is	certainly	not	what	most	players	would	expect	for	this	type
of	game.	So,	we	may	now	consider	monitoring,	and	updating	the	status	of	a	player's	health	as	they	are	hit	by
advancing	mob	objects,	i.e.	our	falling	and	rotating	asteroids.

One	way	to	protect	our	player,	and	their	ship,	is	to	use	a	Star	Trek	like	shield.	This	shield	will	offer	full	protection
initially,	and	then	weaken	with	each	hit	from	a	mob	object	until	it	eventually	fails	at	value	 0 .	We'll	set	a	default	for	this
player	shield	in	the	 Player 	class,

#	set	default	health	for	our	player	-	start	at	max	100%	and	then	decrease...
self.stShield	=	100

Then,	we	need	to	modify	our	logic	for	a	mob	collision	to	ensure	that	the	way	we	handle	such	objects	better	reflects	a
decrease	in	the	player's	shield,	and	health.

For	example,	instead	of	allowing	a	mob	object	to	continue	after	it	has	collided	with	the	player,	we	now	need	to	remove
it	from	the	game	window.	If	we	don't	update	this	boolean	to	 True ,	each	mob	object	will	simply	continue	to	hit	the
player	as	it	moves,	pixel	by	pixel,	through	the	player's	ship.	A	single	hit	would	quickly	become	compounded	in	the
gameplay.

#	add	check	for	collision	-	enemy	and	player	sprites	(True	=	hit	object	is	now	
deleted	from	game	window)
collisions	=	pygame.sprite.spritecollide(player,	mob_sprites,	True,	
pygame.sprite.collide_circle)

Then,	as	our	player	may	be	hit	by	multiple	mob	objects,	we	also	need	to	update	our	check	from	a	simple	conditional	to
a	loop	through	the	possible	collisions,

#	check	collisions	with	player's	ship	-	decrease	shield	for	each	hit
for	collision	in	collisions:
				#	decrease	player's	shield	for	each	collision
				player.stShield	-=	20

				#	check	overall	shield	value	-	quit	game	if	no	shield
				if	player.stShield	<=	0:
								running	=	False

So,	our	player's	shield	will	now	survive	four	direct	collisions	before	the	fifth	will	destroy	the	ship,	and	then	end	the
game.

Replace	mob	objects

Whilst	this	now	works	as	expected,	we	have	an	issue	with	losing	mob	objects	if	they	collide	with	the	player's	ship.	This
follows	the	same	underlying	pattern	as	the	player's	laser	beam	firing	on	the	asteroids,	our	mob	objects.

So,	we	need	to	create	a	new	object	if	it	is	removed	after	a	collision.	As	this	is	a	familiar	pattern,	we	may	now	abstract
the	creation	of	the	mob	objects	to	avoid	repetition	of	code,	e.g.

#	create	a	mob	object
def	createMob():
				mob	=	Mob()
				#	add	to	game_sprites	group	to	get	object	updated
				game_sprites.add(mob)
				#	add	to	mob_sprites	group	-	use	for	collision	detection	&c.
				mob_sprites.add(mob)

This	simple	abstracted	function	now	allows	us	to	easily	recreate	our	mob	objects	by	creating	a	mob	object,	adding	it	to
the	overall	group	of	 game_sprites ,	and	then	the	specific	group	for	the	game's	 mob_sprites .

We	can	then	call	this	abstracted	function	whenever	a	mob	object	collides	with	a	projectile,	or	the	player's	ship.	We
may	also	call	this	function	when	we	initially	create	our	new	mob	objects	as	part	of	the	loop	to	10.

#	create	a	new	mob	object
createMob()

Show	player's	health	-	status	bar

We've	already	defined	a	default	maximum	for	our	player's	shield,	and	we	can	now	start	to	output	its	value	to	the	game
window.

Whilst	we	could	simply	output	a	numerical	value,	as	we	did	for	the	player's	score,	it	seems	more	interesting	to	show	a
graphical	update	for	the	status	of	a	player's	health.

So,	we	can	define	a	new	draw	function	to	allow	us	to	render	a	visual	health	bar	for	the	player's	shield,

#	draw	a	status	bar	for	the	player's	health	-	percentage	of	health
def	drawStatusBar(surface,	x,	y,	health_pct):
				#	defaults	for	status	bar	dimension
				BAR_WIDTH	=	100
				BAR_HEIGHT	=	10
				#	use	health	as	percentage	to	calculate	fill	for	status	bar
				bar_fill	=	(health	/	100)	*	BAR_WIDTH
				#	rectangles	-	outline	of	status	bar...
				bar_rect	=	pygame.Rect(x,	y,	BAR_WIDTH,	BAR_HEIGHT)
				fill_rect	=	pygame.Rect(x,	y,	bar_fill,	BAR_HEIGHT)
				#	draw	health	status	bar	to	the	game	window	-	1	specifies	pixels	for	border	width
				pygame.draw.rect(surface,	GREEN,	fill_rect)
				pygame.draw.rect(surface,	WHITE,	bar_rect,	1)

This	function	accepts	four	parameters,	which	allow	us	to	easily	define	a	surface	for	rendering,	its	 x 	and	 y 	location	in
the	game	window,	and	then	update	the	status	of	the	player's	health.	In	this	case,	we're	simply	updating	the	health	of
the	shield	for	the	player's	ship.

We	can	set	a	default	width	and	height	for	the	status	bar,	and	then	specify	how	much	of	this	bar	needs	to	be	filled	with
colour	relative	to	the	player's	current	health	status.	This	health	status	can	be	calculated	as	a	percentage,	which	then
allows	us	to	easily	modify	the	relative	sizes	for	the	status	bar.

We	may	also	specify	our	rectangles	for	the	status	bar,	which	includes	an	outer	container	for	the	status	bar,	and
effectively	an	inner	bar	for	the	colour	fill	to	represent	the	player's	health.

Our	current	health	status	bar	will	now	start	by	showing	100%	fill,	and	then	reduce	by	20%	for	each	collision	between	a
mob	object,	one	of	our	asteroids,	and	the	player's	ship.	When	the	health	hits	0,	the	game	will	then	quit.

References

pygame.draw
pygame.sprite

Demo

playerhealth1.py
shooter1.0.py
check	player's	health

set	default	health	to	100%
decrement	health	per	collision

quit	game	when	health	reaches	0

draw	status	bar	to	game	window
green	colour	for	good	health
change	to	red	colour	below	40%

https://www.pygame.org/docs/ref/draw.html
https://www.pygame.org/docs/ref/sprite.html

