
Pygame	-	Dev	Notes	-	Control	-	Move	-	Coordinate	Plane
A	few	notes	on	using	controls	to	move	shapes	with	Pygame.

Contents

Intro
Interaction	and	events

keyboard

4-point
left	and	right
up	and	down

8-point
Jump
Jump	and	fall
Move	and	jump

Intro

We	can	listen	for	controller	events,	for	example	a	keyboard,	and	then	move	our	shapes	around	the	game	window.

These	shapes	may	be	moved	anywhere	on	the	screen	using	a	standard	coordinate	plane.

So,	we	end	up	with	a	couple	of	patterns.	These	include	the	standard	4-point,

left,	right,	up,	and	down

which	equates	to	the	standard	cardinal	points	we	find	on	a	compass.	The	standard	4-point	coordinate	plane.

We	may	also	use	a	broader	8-point	pattern,	which	extends	to

up	and	right,	up	and	left
down	and	right,	down	and	left

The	8-point	coordinate	plane	may	be	achieved	in	a	Pygame	window	either	explicitly	or	implicitly,	depending	on	how
we've	configured	the	listeners	for	interaction	events.

Interaction	and	events

After	importing	 pygame.events ,	we	may	create	required	listeners	for	interaction	control,	e.g.	for	a	key	pressed	down
on	a	player's	keyboard.

...
#	check	keyboard	events	-	keydown
if	event.type	==	pygame.KEYDOWN:
...

or	a	key	released	up

#	check	keyboard	events	-	keyup
if	event.type	==	pygame.KEYUP:

4-point

After	creating	a	standard	listener	for	an	interaction	event,	for	example	a	keyboard	event,	we	may	initially	move	our
shape	using	one	of	4-points	on	a	coordinate	plane.	e.g.

left,	right,	up,	and	down

left	and	right

We	may	then	check	a	specific	key	event	relative	to	keydown,	perhaps	a	player	request	to	move	a	shape	left	or	right.

On	the	 KEYDOWN 	event,	we	update	the	boolean	value	for	the	requested	key,

#	check	keyboard	events	-	keydown
if	event.type	==	pygame.KEYDOWN:
				if	event.key	==	pygame.K_LEFT:
								leftDown	=	True
				if	event.key	==	pygame.K_RIGHT:
								rightDown	=	True

and	then	reset	it	to	 FALSE 	on	the	 KEYUP 	event,

#	check	keyboard	events	-	keyup
if	event.type	==	pygame.KEYUP:
				if	event.key	==	pygame.K_LEFT:
								leftDown	=	False
				if	event.key	==	pygame.K_RIGHT:
								rightDown	=	False

We	can	use	the	set	boolean	value	to	modify	the	animation	of	a	shape,	e.g.

...
#	event	variables	-	keyboard
leftDown	=	False
rightDown	=	False
#	some	rect	variables
rectSpeed	=	4.0
...
#	move	left
if	leftDown:
				#	check	shape	doesn't	exit	window	to	left
				if	rectX	>	0.0:
								rectX	-=	rectSpeed
#	move	right
if	rightDown:
				#	check	shape	doesn't	exit	window	to	right
				if	rectX	+	rectSize	<	winWidth:
								rectX	+=	rectSpeed
...

In	this	example,	we're	checking	the	boolean	value	for	left	or	right	key	down.	If	set	to	true,	i.e.	the	player	has	pressed
the	key	down,	we	can	then	check	the	shape's	 x 	coordinate	position.

In	effect,	we	check	either	the	left	or	right	side	of	the	game	window	relative	to	the	key	pressed.	Then,	we	either
increment	or	decrement	the	shape's	 x 	coordinate	by	the	set	speed	for	our	animation.

up	and	down

We	may	also	use	such	interaction	events	to	animate	our	shape	up	or	down	the	screen.	Again,	we	set	a	boolean	value
to	 TRUE 	or	 FALSE 	relative	to	the	 KEYUP 	or	 KEYDOWN 	event.

Then,	we	can	animate	our	shape	up	and	down	the	game	window,	e.g.

...
#	event	variables	-	keyboard
upDown	=	False
downDown	=	False
#	some	rect	variables
rectSpeed	=	4.0
...
#	move	up
if	upDown:
				#	check	shape	doesn't	exit	window	at	top
				if	rectY	>	0.0:
								rectY	-=	rectSpeed
#	move	down
if	downDown:
				#	check	shape	doesn't	exit	window	at	bottom
				if	rectY	+	rectSize	<	winHeight:
								rectY	+=	rectSpeed

8-point

In	addition	to	the	standard	left,	right,	up,	and	down	directions,	we	may	also	combine	these	events	to	allow	a	user	to
move	a	shape	in	a	diagonal	direction.

For	example,	a	player	may	simultaneously	press	 KEYDOWN 	on	both	up	and	right.	This	will	allow	a	player	to	move	a
shape	at	a	45	degree	angle.

...
#	move	up
if	upDown:
				#	check	shape	doesn't	exit	window	at	top
				if	rectY	>	0.0:
								rectY	-=	rectSpeed
#	move	right
if	rightDown:
				#	check	shape	doesn't	exit	window	to	right
				if	rectX	+	rectSize	<	winWidth:
								rectX	+=	rectSpeed

Of	course,	a	player	may	also	use	other	available	combinations	to	move	the	shape	at	one	of	4	available	angles	of	45
degrees.

								-x	-y									+x	-y
													\							/
														\					/
															shape
														/					\
													/							\
								-x	+y									+x	+y

Jump

To	make	a	shape	jump,	we	can	start	by	defining	a	useful	boolean	variable	 shapeJump .	We	can	then	simply	update
this	value	to	define	whether	the	character	is	jumping	or	not.

We	can	also	define	a	default	pixel	height	for	the	jump	itself.	In	effect,	this	is	simply	defining	how	far	to	move	the	shape
up	the	game	window.

jumpHeight	=	30.0

Then,	we	can	add	a	listener	for	the	defined	key.	For	example,	we	might	simply	use	the	obvious	UP	directional	arrow
on	our	keyboard,

...
#	check	keyboard	events	-	keydown
if	event.type	==	pygame.KEYDOWN:
				#	check	for	directional	UP	key
				if	event.key	==	pygame.K_UP:
								if	not	shapeJump:
												shapeJump	=	True
												shapeJY	+=	jumpHeight
...

So,	in	this	example,	we're	listening	for	the	standard	player	 KEYDOWN 	event,	and	then	the	actual	directional	UP	key
event.	We	check	the	boolean	value	of	the	variable	 shapeJump ,	update	to	 True 	if	the	shape	is	not	already	jumping.
Then,	we	incrementally	update	the	value	of	the	shape's	requested	jump	Y	value,	 shapeJY .

To	make	the	shape	jump,	or	effectively	move	up	the	screen	per	iteration	of	the	game	loop,	we	can	define	a	function	to
handle	this	jump,	 jump() .	For	example,

def	jump():
				global	shapeY,	shapeJY,	shapeJump

				#	check	if	shape	in	air	-	use	gravity	to	descend
				if	shapeJump	==	True:
								shapeY	-=	shapeJY
								print("in	the	air	%8.2f"	%	(shapeJY))
								shapeJump	=	False

We	can	check	the	output	of	the	jump	up	the	screen	by	simply	printing	the	formatted	float	to	the	terminal.	If	you	run	this
example,	you'll	notice	that	the	shape	will	keep	jumping	as	the	player	presses	the	UP	directional	key,	well	beyond	the
bounds	of	the	top	of	the	game	window.

Jump	and	fall

Now,	we	could	make	the	shape	move	down	the	window	by	listening	for	an	explicit	player	key	press	on	the	DOWN
directional	key.

However,	it's	more	natural,	and	expected	behaviour,	to	allow	our	shape	to	fall	after	the	player	has	pressed	the	UP
arrow.	In	effect,	we're	allowing	our	shape	to	jump,	and	then	fall	with	a	real-world	behaviour	of	gravity.

For	example,	we've	already	seen	how	to	update	a	shape's	position	to	make	it	jump.	To	make	it	fall,	we	need	to	check
that	the	shape	is	in	the	air,	so	to	speak,	and	then	gradually	modify	gravity	to	lower	the	shape	to	the	original	starting
position	in	the	Pygame	window.

def	jump():
				global	shapeY,	shapeJY,	shapeJump,	gravity
				#	check	upward	speed	>	1.0
				if	shapeJY	>	1.0:
								#	gradually	decrease	upward	speed	to	less	than	1.0
								shapeJY	=	shapeJY	*	0.9
				else:
								#	less	than	1.0,	reset	to	0.0	to	allow	shape	to	fall
								shapeJY	=	0.0
								#	stop	jump
								shapeJump	=	False

				#	check	if	shape	in	air	-	use	gravity	to	descend
				if	shapeY	<	winHeight	-	shapeSize:
								shapeY	+=	gravity
								gravity	=	gravity	*	1.1
				else:
								shapeY	=	winHeight	-	shapeSize
								gravity	=	1.0

				shapeY	-=	shapeJY

In	the	above	example,	we	start	by	checking	whether	the	shape	is	still	moving	up	the	screen,	effectively	if	the	jump	is
still	in	progress.	Whilst	the	upward	speed	of	the	shape	is	still	above	 1.0 ,	we	gradually	start	to	decrease	the	speed	so
it	will	eventually	reach	a	limit	for	the	jump.

The	faster	we	decrease	this	upward	motion,	the	shorter	the	shape	will	appear	to	jump.	This	will	also	negate	the	overall
effect	of	the	value	of	the	variable	 jumpHeight ,	which	now	has	less	iterations	of	the	game	loop	to	move	the	shape	up
the	screen.

Then,	we	need	to	check	if	the	shape	is	actually	moving	up	the	screen,	or	effectively	in	the	air	for	the	jump.	If	not,	then
the	shape	will	simply	come	to	a	halt	as	it	rises	up	the	screen	due	to	the	decrease	in	upward	speed	and	motion.

This	is	where	we	need	to	add	the	perception	of	gravity	to	the	shape's	motion.	So,	whilst	the	shape	appears	to	be	in
the	air,	or	jumping	up	the	screen,	we	start	to	add	the	number	of	pixels	we	define	for	the	variable	gravity	to	our	shape's
upward	movement.

As	the	shape	starts	to	fall	down	the	game	window,	we	slowly	increase	the	value	of	the	 gravity 	variable	to	suggest	a
realistic	downward	fall.	If	not,	then	the	jump	and	fall	will	not	be	timed	correctly,	and	a	player	will	perceive	the	shape's
fall	as	very	slow.	It	will	simply	seem	unrealistic,	as	though	the	gravity	is	too	low.

Move	and	jump

We	can	now	combine	moving	a	shape	horizontally,	vertically,	and	jumping	to	create	a	shape	that	a	player	can	move
and	control	freely	in	the	Pygame	window.	For	example,	our	code	is	now	as	follows,

def	move():
				global	shapeX,	shapeY,	shapeRX,	shapeJY,	shapeJump,	gravity

				#	move	left
				if	leftDown:
								#	check	shape	not	exit	window	to	left
								if	shapeX	>	0.0:
												shapeX	-=	shapeSpeed
				#	move	right
				if	rightDown:
								#	check	shape	not	exit	window	to	right
								if	shapeX	+	shapeSize	<	winWidth:
												shapeX	+=	shapeSpeed

				#	check	upward	speed	>	1.0

				if	shapeJY	>	1.0:
								#	gradually	decrease	upward	speed	to	less	than	1.0
								shapeJY	=	shapeJY	*	0.9
				else:
								#	less	than	1.0,	reset	to	0.0	to	allow	shape	to	fall
								shapeJY	=	0.0
								#	stop	jump
								shapeJump	=	False

				#	check	if	shape	in	air	-	use	gravity	to	descend
				if	shapeY	<	winHeight	-	shapeSize:
								shapeY	+=	gravity
								gravity	=	gravity	*	1.1
				else:
								shapeY	=	winHeight	-	shapeSize
								gravity	=	1.0

				shapeY	-=	shapeJY

With	the	above	 move 	function,	we've	now	combined	horizontal	movement	with	a	vertical	jump.	So,	our	player	can
now	make	the	shape	move	from	left	to	right,	and	jump	at	the	same	time.	Expected	behaviour	for	many	well-known
platform	genre	games.

We	can	then	update	the	game	loop	to	include	the	required	listeners	and	handlers	for	horizontal	movement,

#	create	game	loop
while	True:
				#	set	clock
				#msElapsed	=	clock.tick(max_fps)
				#print(msElapsed)
				#	'processing'	inputs	(events)
				for	event	in	EVENTS.get():
								#	check	keyboard	events	-	keydown
								if	event.type	==	pygame.KEYDOWN:
												#	check	for	directional	-	LEFT	and	RIGHT
												if	event.key	==	pygame.K_LEFT:
																leftDown	=	True
												if	event.key	==	pygame.K_RIGHT:
																rightDown	=	True
												#	check	for	directional	-	UP
												if	event.key	==	pygame.K_UP:
																if	not	shapeJump:
																				shapeJump	=	True
																				shapeJY	+=	jumpHeight
												#	check	for	ESCAPE	key
												if	event.key	==	pygame.K_ESCAPE:
																gameExit()

								#	check	keyboard	events	-	keyup
								if	event.type	==	pygame.KEYUP:
												if	event.key	==	pygame.K_LEFT:
																leftDown	=	False
												if	event.key	==	pygame.K_RIGHT:
																rightDown	=	False

We'll	also	add	the	required	listener	for	 KEYUP 	so	we	can	stop	our	shape	from	continuously	moving	right	or	left.

Our	shape	can	now	walk	and	jump	across	the	game	window.

