
Pygame	-	Dev	Notes	-	Getting	started
A	few	notes	on	getting	started	with	Pygame	and	basic	game	development.

Contents

Intro
What	is	Pygame?
Game	development

imports
Pygame	window	defaults
Pygame	initialise

Game	loop
add	loop
processing	inputs	-	events
Pygame	event	tracking
rendering	-	double	buffering
monitor	FPS

Finish	the	basic	template
Another	example	template

Intro

These	notes	offer	a	brief	intro	to	working	with	Python	and	Pygame	to	help	create	our	first	video	game	with	this
development	library.

What	is	Pygame?

Pygame	is	a	powerful	and	useful	set	of	modules	to	help	develop	and	create	games	with	Python.	Further	details	may
be	found	on	the	Pygame	website	at	the	following	URL,

Pygame

Game	development

As	we	do	for	other	languages	and	development,	e.g.	web	stack	based	development,	we	can	create	a	template	file	for
starting	our	Pygame	based	projects.	There	are	a	number	of	ways	to	setup	a	template	for	such	game	based
development.

imports

We'll	start	by	importing	the	pygame	module,	which	helps	setup	our	template	for	use	with	required	modules

#	import	modules	for	pygame	template
import	pygame

Pygame	window	defaults

We	can	then	add	some	defaults	for	a	window	in	Pygame,	defining	our	variables	as	follows

#	variables	for	game	window	and	speed
winWidth	=	800

http://www.pygame.org/lofi.html

winHeight	=	600
FPS	=	30

We're	setting	the	default	window	size,	and	the	frames	per	second	for	the	game	itself.	In	effect,	how	fast	the	game	will
update	per	second	on	each	system.	We	can	obviously	update	this	value	for	each	game's	requirements.

Our	game	loop	will	then	reflect	the	number	of	frames	per	second,	which	means	it	will	now	run	itself	30	times	each
second.	Effectively,	each	loop	is	set	to	1/30	of	a	second.

Pygame	initialise

The	next	thing	to	add	to	our	Pygame	template	is	the	general	initialisation	for	our	game's	initial	settings.

We	can	start	by	initialising	Pygame,	and	the	sound	mixer.	The	sound	mixer	allows	us	to	play	back	sound	at	various
points	in	our	game.

Then,	we	can	create	our	screen	or	window	for	the	game,	and	add	a	brief	caption	for	this	window.

As	we're	defining	the	FPS	for	our	game,	we	also	need	to	define	a	clock.	This	clock	helps	us	track	how	fast	the	game	is
going,	and	allows	us	to	ensure	that	we're	maintaining	the	correct	FPS.

#	initialise	pygame	settings	and	create	game	window
pygame.init()
pygame.mixer.init()
window	=	pygame.display.set_mode((winWidth,	winHeight))
pygame.display.set_caption("game	template")
clock	=	pygame.time.clock()

Game	loop

We've	now	setup	and	initialised	the	basics	for	our	template.	However,	we	need	to	add	a	basic	game	loop	to	our
Pygame	template.

One	of	the	key	requirements	for	developing	a	game,	including	with	Python	and	Pygame,	is	the	creation	of	a	game
loop.

A	Game	loop	is	executed	for	every	frame	of	the	game,	and	the	following	three	processes	will	happen:

processing	inputs	(aka	events)
responding	to	interaction	from	the	player	within	the	game	-	e.g.	keyboard	press,	mouse,	game	controller...
listening	for	these	events,	and	then	responding	accordingly	in	the	game's	logic

updating	the	game
updating,	modifying	anything	in	the	game	that	needs	a	change...graphics,	music,	interaction	&c.
a	character	moving	-	need	to	work	out	where	they	might	be	moving	&c.
characters,	elements	in	the	game	collide	-	what	happens	when	they	collide?	&c.
i.e.	responding	to	changes	in	state	and	modifying	a	game...

rendering	to	the	screen
drawing	modifications,	updates,	&c.	to	the	screen
we've	worked	out	what	needs	to	change,	we're	now	drawing	(rendering)	those	changes

As	part	of	the	game's	development,	we	may	also	need	to	consider	how	many	times	this	game	loop	repeats.	i.e.	the
frames	per	second	that	this	loop	repeats.	FPS	is	important	to	ensure	that	the	game	is	not	running	too	fast	or	too	slow.

However,	specific	FPS	usage	will	often	depend	upon	the	type	of	game	being	developed.

As	noted	above,	the	standard	pattern	requires,

processing	inputs	(events)
updating	the	game
rendering	to	the	screen

add	loop

For	each	game	we	develop,	we'll	need	to	add	a	game	loop	to	control	and	manage	this	pattern.	In	effect,	we're	listening
for	inputs,	events,	then	updating	the	game,	and	finally	rendering	any	changes	for	the	user.

So,	we	can	add	a	standard	 while 	loop	as	our	primary	game	loop.	e.g.

#	boolean	for	active	state	of	game
active	=	True
#	create	game	loop
while	active:
				#	'processing'	inputs	(events)
				#	'updating'	the	game
				#	'rendering'	to	the	screen

This	loop	is	following	our	pattern	of	listening	and	processing	inputs,	updating	the	game,	and	finally	rendering	or
drawing	the	game	to	the	display	for	the	player.

The	boolean	 active 	allows	us	to	monitor	the	active	state	of	the	game	loop.	As	long	as	the	value	is	set	to	 True 	it
will	keep	running.	By	updating	this	value	to	 False 	we	can	then	exit	this	 while 	loop,	thereby	avoiding	the	dreaded
infinite	loop.	The	use	of	this	boolean	value	is	one	option	for	exiting	the	 while 	loop.	An	alternative	is	also	shown	in
the	final	code	example	of	this	document.	This	follows	better	practices	for	working	with	Pygame.

processing	inputs	-	events

As	the	game	is	running,	a	player	should	be	able	to	interact	with	the	game	window,	such	as	clicking	the	exit	button,	or
using	one	of	the	defined	control	options,	perhaps	a	keyboard	option.

However,	if	we	consider	the	nature	of	a	 while 	loop	we	may	see	an	issue	with	the	underlying	logic.	In	effect,	what
happens	if	a	user	clicks	a	button	on	the	keyboard	whilst	the	loop	is	either	updating	or	rendering.

Obviously,	we	need	to	be	able	to	listen	and	record	all	events	for	our	game	regardless	of	the	current	executed	point	in
the	 while 	loop.	If	not,	we	would	only	be	able	to	listen	for	events	at	the	start	of	the	loop,	as	part	of	the	processing
logic.

Thankfully,	Pygame	has	a	solution	for	this	issue.

Pygame	event	tracking

Pygame	is	able	to	keep	track	of	each	requested	event	from	one	executed	iteration	of	the	game	loop	to	the	next.	In
effect,	it	will	remember	events	as	the	game's	 while 	loop	executes	the	updating	and	rendering	logic	for	our	game.

Then,	as	the	 while 	loop	executes	the	processing	logic,	we're	able	to	check	if	there	have	been	any	new	events.	For
example,	we	can	now	add	a	simple	 for 	loop	to	check	for	each	and	every	event	that	Pygame	has	saved,	e.g.

...
for	event	in	pygame.event.get():
				...

We	can	start	by	checking	for	an	event	registered	as	clicking	on	the	exit	button	to	close	the	current	game	window.	e.g.

...
for	event	in	pygame.event.get():
				#	check	for	window	close	click
				if	event.type	==	pygame.QUIT:

								#	update	boolean	for	running
								active	=	False

So,	we're	checking	for	a	saved	event	that	simply	indicates	the	user	wants	to	close	the	current	game	window.	We	then
update	the	value	of	the	boolean	for	the	active	game,	setting	the	value	of	the	 active 	variable	to	 False .	The	game
loop,	our	 while 	loop,	will	now	exit.

We	can	then	add	a	call	to	quit	Pygame	at	the	end	of	our	current	Python	file.	e.g.

...
pygame.quit()

The	game	will	now	exit,	and	the	Pygame	window	will	close.

rendering	-	double	buffering

As	we	start	to	render	colours,	lines,	shapes	&c.	to	our	Pygame	window,	we	need	to	be	careful	not	to	re-render
everything	for	each	update.	Our	game	would	become	very	resource	intensive	if	we	need	to	draw	everything	for	each
event	and	update	in	our	game	per	game	loop.

With	this	in	mind,	we	can	use	an	option	known	as	double	buffering.

In	Pygame,	this	uses	a	concept	of	pre-drawing	and	then	rendering	as	and	when	the	drawing	is	ready	to	be	viewed	by
the	player.

For	example,	an	artist	is	drawing	a	portrait	of	a	customer	sitting	in	front	of	them.	When	they	are	happy	with	the
drawing,	they	simply	turn	or	flip	this	drawing	so	the	customer,	the	sitter,	can	see	the	finished	portrait.

We	can	add	this	to	our	template	as	follows,

...
#	flip	our	display	to	show	the	completed	drawing
pygame.display.flip()

This	flip	must	be	the	last	call	after	drawing.	If	not,	nothing	will	be	displayed	to	the	game's	player.

monitor	FPS

Our	game	loop	may	also	need	to	monitor	and	maintain	the	defined	setting	for	our	game's	FPS.

Currently,	we've	set	this	to	run	at	30	frames	per	second.	We	need	to	ensure	this	is	monitored	as	part	of	our	game
loop,	i.e.	within	the	logic	of	our	game's	 while 	loop.

...
#	check	game	loop	is	active
while	active:
				#	monitor	fps	and	keep	game	running	at	set	speed
				clock.tick(FPS)
...

So,	Pygame	is	now	able	to	keep	our	game	running	at	the	defined	frames	per	second.	As	the	loop	runs,	it	will	always
ensure	that	the	loop	executes	the	required	1/30	second.

Therefore,	as	long	as	the	loop	is	able	to	process,	update,	and	render	within	this	defined	time	period,	the	game	will	run
correctly.	If	not,	and	the	update	is	taking	too	long,	the	game	will	end	up	running	with	lag,	and	appear	jittery	to	the
player.	This	is	when	we	need	to	consider	optimisation	of	code	&c.

Finish	the	basic	template

As	we're	only	listening	for	the	exit	event	on	the	game	window,	we	don't	currently	have	any	game	content	to	update.

So,	our	current	template	has	set	up	a	game	window,	and	environment,	to	test	initial	setup	and	initialisation,	and	then
allow	a	player	to	exit	the	game	and	window.

...
#	quit	the	Pygame	window,	exiting	the	game
pygame.quit()
...

Another	example	template

We	may	create	our	initial	template	using	many	variations	on	the	above	patterns.	For	example,	another	template	might
be	as	follows,

#	import	modules	for	pygame	template
import	pygame,	sys

#	variables	for	pygame
winWidth	=	800
winHeight	=	600

#	variables	for	commonly	used	colours
BLUE	=	(0,	0,	255)

#	initialise	pygame	settings	and	create	game	window
pygame.init()
window	=	pygame.display.set_mode((winWidth,	winHeight))
pygame.display.set_caption("game	template")

#	define	game	quit	and	program	exit
def	gameExit():
				pygame.quit()
				sys.exit()

#	create	game	loop
while	True:
				#	'processing'	inputs	(events)
				for	event	in	pygame.event.get():
								if	event.type	==	pygame.QUIT:
												gameExit()
				#	'updating'	the	game

				#	'rendering'	to	the	window
				window.fill(BLUE)
				#	'flip'	display	-	always	after	drawing...
				pygame.display.flip()

