
Pygame	-	Dev	Notes	-	Game	Extras	-	Explosions
A	brief	intro	on	adding	fun	options	such	as	explosions	to	a	game	window	with	Pygame.

Contents

Intro
Explosions	for	sprite	objects
Load	explosion	images
Create	explosion	sprite	object
Add	explosions	to	collisions
Add	explosions	to	player's	ship
Scale	explosion	images
References
Demo

Intro

For	an	example	game,	such	as	Space	Invaders	or	a	similar	classic	STG,	we	may	wish	to	add	a	sense	of	explosions
for	some	of	our	game	sprites.

Explosions	for	sprite	objects

To	create	realistic	explosion	effects	for	our	sprite	objects,	we	need	to	create	or	import	a	series	of	images	for	these
explosions.

We	may	then	use	these	defined	images	to	create	an	animated	sequence	for	each	required	explosion.	In	effect,	as
we've	seen	with	standard	animation,	we	specify	a	starting	image	and	then	cycle	or	animate	our	way	through	this	set	of
images.

In	our	game,	we	may	introduce	this	animation	for	each	projectile	collision	with	an	asteroid,	or	perhaps	as	our	player's
ship	finally	runs	out	of	lives	and	explodes.

These	are	fun	extras	that	add	a	sense	of	achievement	to	the	underlying	challenge	of	destroying	advancing	asteroids
or	alien	ships.

Load	explosion	images

As	we've	done	so	far	for	other	game	sprite	objects,	we	need	to	be	able	to	define	and	load	our	images	for	the
explosions.	We'll	use	a	list	for	these	images,	as	we	did	for	the	random	asteroids,	and	then	we	can	cycle	through	these
explosions	as	required.

So,	our	first	example	will	use	a	list	to	simply	load	these	explosion	images.	As	we	know	the	directory	for	these	images,
and	the	required	number	of	images,	we'll	use	a	 for 	loop	to	iterate	over	this	directory	and	load	our	images,	e.g.

#	explosions
explosion_imgs	=	[]

#	iterate	over	explosion	images	in	directory
for	i	in	range(9):
				file	=	'explosion{}.png'.format(i)
				#	load	image	from	os
				expl_img	=	pygame.image.load(os.path.join(img_dir,	file)).convert()
				#	set	colour	key	for	image
				expl_img.set_colorkey(BLACK)
				#	append	to	specified	list	for	explosion	images

				explosion_imgs.append(expl_img)

As	we	loop	through	the	directory	of	images,	we	can	use	the	built-in	function,	 format() ,	to	specify	an	abstracted
value	for	the	iterator	number,	in	this	example,	of	the	created	filename.	So,	for	each	iteration,	the	value	for	the	 {}
braces	will	be	replaced	with	the	index	value	of	the	iterator.

Then,	we	may	create	our	image	for	the	Pygame	window,	and	set	the	colour	key	to	black	to	create	our	transparency	for
the	containing	shape's	background.

We	can	then	append	these	images	to	our	list	for	explosions.

Create	explosion	sprite	object

As	we've	done	for	other	sprite	objects,	we	may	now	create	a	new	class	to	help	us	represent	and	organise	our	sprite
object	for	explosions.

So,	we'll	add	a	new	class	for	this	object,	and	then	start	by	initialising	this	sprite,	e.g.

#	create	a	generic	explosion	sprite	-	use	for	asteroids,	player	explosions	&c.
class	Explosion(pygame.sprite.Sprite):
				#	initialise	sprite
				def	__init__(self,	center):
								pygame.sprite.Sprite.__init__(self)
								...

After	initialising	this	new	sprite	object,	we	can	set	the	starting	image	for	our	explosions	to	the	first	index	position	of	our
list	for	the	explosion	images.	Then,	we	need	to	add	the	rectangle	for	this	image,	and	set	its	centre	to	the	specified
value	of	the	pass	parameter.

We	also	need	to	set	the	initial	frame	for	our	animation,	which	we	can	set	to	a	starting	default	of	 0 .

As	we're	working	with	an	animation,	which	is	cycling	through	images,	we	need	to	try	to	make	this	steady	and	constant.
One	way	to	achieve	this	desired	animation	effect	is	to	create	a	steady	framerate	for	the	animation	itself.	So,	we	may
now	check	the	time	in	ticks	for	the	last	update,	following	the	pattern	we've	seen	earlier	in	our	game.

Then,	we	can	set	a	default	framerate	for	this	animation.	We	can	test	this	animation,	and	modify	this	framerate	as
required.

#	create	a	generic	explosion	sprite	-	use	for	asteroids,	player	explosions	&c.
class	Explosion(pygame.sprite.Sprite):
				#	initialise	sprite
				def	__init__(self,	center):
								pygame.sprite.Sprite.__init__(self)
								#	specify	image	for	explosion	sprite
								self.image	=	explosion_imgs[0]
								#	set	rect	for	image
								self.rect	=	self.image.get_rect()
								self.rect.center	=	center
								#	set	initial	frame	for	animation
								self.frame	=	0
								#	check	last	update	to	animation
								self.last_update	=	pygame.time.get_ticks()
								#	set	framerate	delay	between	animation	frames	-	sets	speed	for	explosion
								self.frame_rate	=	50

Then,	we	need	to	add	an	 update 	function	to	our	class,	which	will	allow	us	to	update	the	image	of	the	explosion	for
this	sprite	object	as	time	progresses.	i.e.	as	the	framerate	advances,	we	can	switch	the	explosion	images	to	create	the
animation	itself.

...
#	change	image	as	time	progresses	for	explosion	sprite

def	update(self):
				#	get	current	time
				now	=	pygame.time.get_ticks()
				#	check	if	enough	time	has	passed	between	animations
				if	now	-	self.last_update	>	self.frame_rate:
								self.last_update	=	now
								#	if	enough	time	passed	-	add	1	to	frame
								self.frame	+=	1
								#	check	if	end	of	explosion	images	reached
								if	self.frame	==	len(explosion_imgs):
												#	kill	if	end	of	image	reached
												self.kill()
								else:
												center	=	self.rect.center
												self.image	=	explosion_imgs[self.frame]
												#	update	rect	for	image
												self.rect	=	self.image.get_rect()
												self.rect.center	=	center

In	this	 update 	function,	we	need	to	check	the	current	time	in	the	game,	which	then	allows	us	to	check	if	enough	time
has	passed	between	each	animation.	If	enough	time	has	elapsed,	we	can	update	the	value	for	the	 last_update
time	record,	and	advance	our	animation	frame	by	an	increment	of	1.	i.e.	we	can	move	to	the	next	available	image	in
the	series	of	explosions.

If	we	reach	the	end	of	these	explosions	images,	i.e.	when	enough	frames	have	passes,	we	can	then	end	or	 kill()
this	animation	for	the	explosions.	If	not,	we	can	set	the	centre	of	our	explosion	image's	rectangle,	and	update	the
image	itself.

Add	explosions	to	collisions

We've	now	create	our	sprite	object	for	explosions,	but	we	still	need	to	use	this	object	in	the	logic	of	our	game.

So,	we	can	now	call	this	explosion	whenever	we	record	a	collision	between,	for	example,	a	projectile	and	an	asteroid.

In	the	game	loop's	update	section,	as	we	check	for	collisions	we	can	now	add	an	animation	for	the	explosions.	e.g.

...
#	add	more	mobs	for	those	hit	and	deleted	by	projectiles
for	collision	in	collisions:
				#	calculate	points	relative	to	size	of	mob	object
				game_score	+=	40	-	collision.radius
				#	play	explosion	sound	effect	for	collision
				explosion_effect.play()
				#	add	animation	for	explosion	images	if	collision
				explosion	=	Explosion(collision.rect.center)
				#	add	explosion	sprite	to	game	sprites	group
				game_sprites.add(explosion)
				#	create	a	new	mob	object
				createMob()
...

As	we're	checking	for	collisions,	we	can	now	create	the	animation	for	the	explosions	after	we	play	the	sound	effect	for
each	explosion.

Add	explosions	to	player's	ship

Adding	these	explosions	to	another	sprite	object,	such	as	collisions	against	the	player's	ship,	is	as	simple	as	updating
the	game	loop	again.	So,	as	we	decrease	the	relative	level	for	the	shield	of	our	player's	ship,	we	can	then	trigger	an
explosion	to	reinforce	this	collision	for	our	player.	e.g.

#	add	check	for	collision	-	enemy	and	player	sprites	(True	=	hit	object	is	now	

deleted	from	game	window)
collisions	=	pygame.sprite.spritecollide(player,	mob_sprites,	True,	
pygame.sprite.collide_circle)
#	check	collisions	with	player's	ship	-	decrease	shield	for	each	hit
for	collision	in	collisions:
				#	decrease	player's	shield	for	each	collision
				player.stShield	-=	20
				#	add	animation	for	explosion	images	if	collision
				explosion	=	Explosion(collision.rect.center)
				#	add	explosion	sprite	to	game	sprites	group
				game_sprites.add(explosion)
				#	create	a	new	mob	object
				createMob()
				#	check	overall	shield	value	-	quit	game	if	no	shield
				if	player.stShield	<=	0:
								running	=	False

Scale	explosion	images

Our	explosions	are	now	being	shown	for	both	initial	types	of	collision	within	our	game.	As	a	projectile	hits	a	mob
object,	and	then	as	a	cascading	mob	object	strikes	the	shield	of	our	player's	ship.

However,	there	is	still	a	lingering	issue	with	these	explosions	that	is	not	reinforcing	the	gameplay	for	our	shooter	style
game.	Effectively,	there	is	no	differentiation	in	the	relative	size	of	an	explosion,	and	therefore	no	semblance	of
feedback	to	our	player.

So,	we	might	add	a	standard	scale	transform	to	the	image	for	each	explosion	sprite	object,

#	explosions
explosion_imgs	=	[]

#	iterate	over	explosion	images	in	directory
for	i	in	range(9):
				file	=	'explosion{}.png'.format(i)
				#	load	image	from	os
				expl_img	=	pygame.image.load(os.path.join(img_dir,	file)).convert()
				#	set	colour	key	for	image
				expl_img.set_colorkey(BLACK)
				#	append	to	specified	list	for	explosion	images
				explosion_imgs.append(expl_img)

This	gives	us	a	smaller,	less	overwhelming	explosion	for	each	mob	object,	and	collision	against	the	player's	ship.

However,	it	would	also	be	useful	to	be	able	to	scale	these	explosions	relative	to	the	actual	size	of	a	given	sprite	object.
So,	a	smaller	relative	explosion	image	for	a	smaller	mob	object,	and	likewise	for	a	collision	against	the	player's	ship.

The	first	thing	we	need	to	do	is	update	our	class	for	the	 Explosion 	object,	which	will	allow	us	to	dynamically	modify
each	explosion	image	in	the	animation	relative	to	a	specified	size.	In	effect,	we	can	scale	each	frame	of	the	explosion
animation	to	match	the	size	of	the	collision	object.

So,	we	can	update	this	class	as	follows,

#	create	a	generic	explosion	sprite	-	use	for	asteroids,	player	explosions	&c.
class	Explosion(pygame.sprite.Sprite):
				#	initialise	sprite
				def	__init__(self,	center,	size):
								pygame.sprite.Sprite.__init__(self)
								#	specify	size	for	explosion	sprite
								self.size	=	size
								#	get	initial	image	for	explosion
								self.image	=	pygame.transform.scale(explosion_imgs[0],	self.size)
...

We'll	start	by	adding	a	parameter	for	 size ,	which	allows	us	to	pass	a	variable	size	for	each	collision	object.	We	can
then	use	this	size	to	scale	the	initial	image	for	the	explosion	animation.

As	we	update	this	object,	each	frame	of	the	animation	will	also	require	scaling	of	the	explosion	image.	e.g.

#	change	image	as	time	progresses	for	explosion	sprite
def	update(self):
				#	get	current	time
				now	=	pygame.time.get_ticks()
				#	check	if	enough	time	has	passed	between	animations
				if	now	-	self.last_update	>	self.frame_rate:
								self.last_update	=	now
								#	if	enough	time	passed	-	add	1	to	frame
								self.frame	+=	1
								#	check	if	end	of	explosion	images	reached
								if	self.frame	==	len(explosion_imgs):
												#	kill	if	end	of	image	reached
												self.kill()
								else:
												center	=	self.rect.center
												self.image	=	pygame.transform.scale(explosion_imgs[self.frame],	
self.size)
												#	update	rect	for	image
												self.rect	=	self.image.get_rect()
												self.rect.center	=	center

The	key	update	is	in	the	block	of	code	for	the	 if/else 	conditional	statement.	As	we	output	each	frame	of	the
explosion	animation,	we	may	then	scale	this	image	to	match	the	passed	 size 	for	the	explosion	object.

So,	different	size	mob	objects	will	have	a	matching	explosion	animation,	which	we	may	update	in	the	game	loop,	e.g.

#	add	check	for	sprite	group	collide	with	another	sprite	group	-	projectiles	hitting	
enemy	objects	-	use	True	to	delete	sprites	from	each	group...
collisions	=	pygame.sprite.groupcollide(mob_sprites,	projectiles,	True,	True)
#	add	more	mobs	for	those	hit	and	deleted	by	projectiles
for	collision	in	collisions:
				#	calculate	points	relative	to	size	of	mob	object
				game_score	+=	40	-	collision.radius
				#	play	explosion	sound	effect	for	collision
				explosion_effect.play()
				#	get	size	of	collision	object
				col_size	=	collision.rect.size
				#print("collision	size	=	"	+	str(col_size))
				#	add	animation	for	explosion	images	if	collision
				explosion	=	Explosion(collision.rect.center,	col_size)
				#	add	explosion	sprite	to	game	sprites	group
				game_sprites.add(explosion)
				#	create	a	new	mob	object
				createMob()

And,	the	same	for	the	player's	sprite	object	as	well.

References

pygame.image
pygame.sprite
pygame.time
pygame.transform

Demo

https://www.pygame.org/docs/ref/image.html
https://www.pygame.org/docs/ref/sprite.html
https://www.pygame.org/docs/ref/time.html
https://www.pygame.org/docs/ref/transform.html

objectexplosions1.py
shooter1.2.py

add	some	fun	explosions
create	sprite	object	for	explosion
cycle	through	images	to	create	explosion	animation
add	explosion	for	each	collision

extra	explosions
explode	a	player's	ship	for	a	collision

scale	explosions
rescale	and	size	explosions	in	game	window

