
Pygame	-	Dev	Notes	-	Drawing	-	Text
Dr	Nick	Hayward

A	few	notes	on	basic	drawing	of	text	with	Pygame.

Contents

Intro
Render	text

render	text	to	game	window

Example	text	usage	-	a	game	score
References
Demo

Intro

These	notes	offer	a	brief	intro	to	basic	drawing	with	Python	and	Pygame,	which	allows	us	to	add	text,	scores,
notifications	&c.	to	the	game	window.

Render	text

Drawing	text	to	a	game	window	in	Pygame	can	become	a	repetitive	process	as	part	of	each	window	update.	So,	we
may	abstract	this	underlying	game	requirement	to	a	text	output	function,

	#	text	output	and	render	function	-	draw	to	game	window
def	textRender(surface,	text,	size,	x,	y):
				#	specify	font	for	text	render
				...

We	start	by	specifying	a	surface	where	we	need	to	draw	the	text,	then	the	text	to	render,	its	size,	and	the	coordinates
relative	to	the	specified	surface.	We	also	need	to	specify	a	font	for	the	text	to	be	rendered.	As	with	web	development,
we're	reliant	upon	the	installed	fonts	for	the	user's	local	system.	However,	we	may	use	a	font-match	function	with
Pygame,	which	helps	abstract	the	specification	of	an	exact	font	to	a	relative	name.	For	example,

#	specify	font	name	to	find
font_match	=	pygame.font.match_font('arial')

Pygame	will	then	search	the	local	system	for	a	font	with	the	specified	name.	We	can,	of	course,	also	include	a	custom
font	file	with	each	game,	but	this	simple	option	helps	abstract	the	font	process	for	each	game.

We	may	now	use	this	specified	font	to	create	an	object	for	the	font	we	need	to	render	text	in	the	game	window,	e.g.

#	specify	font	for	text	render	-	uses	found	font	and	size	of	text
font	=	pygame.font.Font(font_match,	size)

The	text	we'll	be	adding	to	the	game	window	needs	to	be	drawn,	effectively	pixel	by	pixel.	So,	Pygame	calculates	the
drawing	for	each	pixel	to	create	the	specified	text	in	the	required	font.	We	can	start	by	specifying	a	surface	to	draw	the
required	pixels	for	the	text,	e.g.

#	surface	for	text	pixels	-	TRUE	=	anti-aliased
text_surface	=	font.render(text,	True,	WHITE)

In	this	example,	we're	specifying	where	to	draw	the	text,	the	text	to	draw	to	the	game	window,	a	boolean	value	for	anti-
aliasing	of	the	text,	and	the	text	colour.

Then,	we	need	to	calculate	a	rectangle	for	placing	the	text	surface,	e.g.

#	get	rect	for	text	surface	rendering
text_rect	=	text_surface.get_rect()

and,	we	can	then	specify	where	to	position	our	text	surface	relative	to	the	defined	 x 	and	 y 	coordinates,	e.g.

#	specify	a	relative	location	for	text
text_rect.midtop	=	(x,	y)

This	text	is	then	added	to	the	surface	using	the	standard	 blit 	function,	e.g.

#	add	text	surface	to	location	of	text	rect
surface.blit(text_surface,	text_rect)

So,	the	created	 text_surface ,	which	contains	the	rendered	text,	is	itself	added	to	the	location	of	the	 text_rect
on	the	overall	specified	surface.	In	most	examples,	this	overall	surface	will	simply	be	the	main	game	window	surface.

Our	overall	text	draw	function	is	now	as	follows,

#	text	output	and	render	function	-	draw	to	game	window
def	textRender(surface,	text,	size,	x,	y):
				#	specify	font	for	text	render	-	uses	found	font	and	size	of	text
				font	=	pygame.font.Font(font_match,	size)
				#	surface	for	text	pixels	-	TRUE	=	anti-aliased
				text_surface	=	font.render(text,	True,	WHITE)
				#	get	rect	for	text	surface	rendering
				text_rect	=	text_surface.get_rect()
				#	specify	a	relative	location	for	text
				text_rect.midtop	=	(x,	y)
				#	add	text	surface	to	location	of	text	rect
				surface.blit(text_surface,	text_rect)

We	may	now	call	this	function	whenever	we	need	to	render	text	to	our	game	window.

render	text	to	game	window

We	can	add	some	text	to	our	game	window	to	test	that	 textRender() 	is	working	correctly.

In	the	 draw 	section	of	our	game	loop,	we	may	now	add	the	following	call,	e.g.

#	draw	text	to	game	window	-	game	score
textRender(window,	str(game_score),	16,	winWidth	/	2,	10)

This	will	call	the	 textRender() 	function,	specifying	the	surface	as	the	overall	game	window,	the	string	to	render,	our
score	for	example,	the	font	size,	and	then	the	x	and	y	coordinates	for	rendering	the	text.

Example	text	usage	-	a	game	score

One	common	example	of	rendering	text	in	a	game	window	is	to	simply	output	a	running	score	for	the	player.

So,	we	may	start	by	adding	an	initial	variable	to	record	the	player's	score	in	the	game,	e.g.

#	initialise	game	score	-	default	to	0
game_score	=	0

Then,	we	need	to	allow	our	player	to	score	points	for	each	projectile	collision	on	a	mob	object,	i.e.	when	a	laser	beam
hits	an	asteroid.	It	might	also	be	fun	to	set	variant	points	relative	to	the	size	of	the	mob	object.	Again,	depending	upon
how	we	specify	these	scores,	we	can	either	pre-define	them	or	use	the	relative	sizes	to	calculate	the	points	per	mob

object.

For	example,	if	we	use	the	radius	of	each	mob	object,	we	may	then	perform	a	quick	calculation	for	each	 collision
to	work	out	points	per	asteroid,

#	calculate	points	relative	to	size	of	mob	object
game_score	+=	40	-	collision.radius

So,	relative	to	the	recorded	 collision ,	we	can	simply	get	the	radius	per	hit	mob	object,	and	then	minus	from	a
known	starting	value.	The	number	of	points	will	then	be	set	relative	to	the	size	of	each	mob	object.

References

pygame.font

Demo

drawingtext1.py	(game	with	text)
drawingtext2.py	(simple	rendered	text)
shooter0.8.py

draw	text	to	the	game	window
keep	a	running	score	for	collisions	with	a	projectile

player	shoots	and	destroys	an	asteroid
score	is	calculated	relative	to	size	of	mob	object	-	radius...

score	is	rendered	to	top	of	game	window
update	for	each	successful	hit

https://www.pygame.org/docs/ref/font.html

