
Pygame	-	Dev	Notes	-	Drawing	-	Moving	Shapes
A	few	notes	on	drawing	and	moving	shapes	with	Pygame.

Contents

Intro
Moving	shapes

updating	with	variables
move	to	the	right
move	to	the	left

Moving	around
move	at	an	angle

Check	move	position

Intro

A	brief	intro	to	drawing	and	moving	shapes	in	the	Pygame	window.	This	includes	initial	examples	for	animating	shapes
using	Pygame.

Moving	shapes

As	we	view	an	animation	on	a	computer's	screen,	we're	not	really	seeing	a	moving	image	or	animation.	Instead,	we're
viewing	rapid	updates	in	pixels	being	drawn,	updated,	refreshed,	and	so	on.	Certain	pixels	might	be	moved,	added,
and	deleted,	but	the	inherent	process	follows	this	underlying	pattern.

updating	with	variables

As	we	start	to	add	animations	to	our	drawings	in	Pygame,	we	can	update	our	draw	patterns	to	use	mutable	variables.
As	expected,	we	can	use	these	variables	to	modify	the	drawn	shapes	per	update	in	the	Pygame	window.

move	to	the	right

For	example,	we	might	want	to	draw	a	rectangle,	and	then	animate	it	across	the	game	window.

#	rect	coords...start	at	the	centre
rectX	=	winWidth	/	2
rectY	=	winHeight	/	2

#	create	game	loop
while	True:
				#	'processing'	inputs	(events)
				...
				#	'updating'	the	game
				#	modify	rectX	by	4	pixels	-	higher	creates	impression	of	faster	animation...
				rectX	+=	4
				#	'rendering'	to	the	window
				window.fill(WHITE)
				#	draw	rectangle
				pygame.draw.rect(window,	GREEN,	(rectX,	rectY,	15,	10))
				#	'flip'	display	-	always	after	drawing...
				pygame.display.flip()

So,	we	add	some	variables	for	the	rectangle	we	want	to	animate.	In	this	example,	we	simply	set	the	X	and	Y
coordinates	to	the	centre	of	the	window.	We	can	then	modify	the	game	loop	by	adding	4	pixels	to	the	X	coordinate	of

the	rectangle	per	game	loop	update.	Then,	we	may	draw	the	rectangle	to	the	game	window	as	part	of	the	rendering.
Finally,	we	can	either	update	or	flip	the	game	window.

The	animation	will	begin,	and	move	to	the	right	side	of	the	Pygame	window.

move	to	the	left

If	we	wanted	to	make	the	rectangle	move	to	the	left	side	of	the	screen,	we	could	simply	modify	the	value	of	the	
rectX 	variable.	This	time,	we	need	to	remove	pixels	to	make	it	go	to	the	left,	e.g.

...
#	modify	rectX	by	4	pixels	-	higher	creates	impression	of	faster	animation...
rectX	-=	4
...

Moving	around

If	we	want	to	animate	our	shapes	in	all	directions,	effectively	modifications	of	the	cardinal	points,	we	can	modify
coordinates	using	the	following	pattern,

																				-x	-y			-y				+x	-y
																									\			|			/
																										\		|		/
																		-x	-----	shape	-----	+x
																										/		|		\
																									/			|			\
																				-x	+y			+y				+x	+y

move	at	an	angle

So,	we	can	make	our	rectangle	move	at	an	angle.

For	example,	we	might	want	to	move	it	an	angle	down	the	screen.	We	can	add	a	variable	for	the	vertical	X	and	Y
coordinates,	which	we	can	incrementally	modify	to	create	the	angle	of	animation	down	to	the	right.

...
#	modify	rect	coordinates	to	create	angle...to	the	right	and	down
rectX	+=	rectVX
rectY	+=	rectVY
rectVX	+=	0.2
rectVY	+=	0.2
...

We	now	have	enough	directions	for	our	shapes	to	be	able	to	recreate	many	classic	games,	including	Space	Invaders,
Pong,	many	platformers,	Zelda,	and	so	on.

Check	move	position

As	our	shape	moves	across	the	screen,	we	may	want	to	check	that	it	doesn't	simply	disappear	from	one	side.	So,	we
can	add	a	check	for	the	position	of	the	shape,	and	then	reset	its	coordinates	to	ensure	it	returns	on	the	other	side	of
the	screen.

For	example,	if	we	animate	our	shape	from	the	left	side	to	the	right	side,	we	may	want	it	to	keep	moving.	We	can	add
a	simple	check	for	the	value	of	the	shape's	X	coordinate	in	the	update	section	of	the	Game	loop,

#	check	position	of	rectX
		if	rectX	>	winWidth:

						rectX	=	0.0

As	the	shape	passes	the	width	of	the	window,	we	reset	the	value	of	the	shape's	X	coordinate,	which	returns	it	to	the
left	side	of	the	screen.

