
Pygame	-	Dev	Notes	-	Drawing	-	Basic
A	few	notes	on	basic	drawing	with	Pygame.

Contents

Intro
Basic	drawing

rectangle
circle
ellipse
triangle	&c.

Intro

These	notes	offer	a	brief	intro	to	basic	drawing	with	Python	and	Pygame.

There	are	built-in	functions	to	help	draw	pre-defined	shapes,	including

rect 	-	rectangle	shape
circle 	-	circle	shapes	drawn	around	a	defined	point
line 	-	draw	a	straight	line

aaline 	-	anti-aliased	line

lines 	-	draw	multiple	contiguous	lines
aalines 	-	anti-aliased	lines

polygon 	-	draw	a	shape	with	a	defined	number	of	sides
any	number	may	be	chosen...

ellipse 	-	a	round	shape	contained	within	a	rectangle
arc 	-	draw	a	partial	section	of	a	standard	ellipse

However,	we	may	also	combine	these	shapes	to	create	our	own	custom	shapes	and	designs.	For	example,	a	triangle,
and	variants	therein.

Basic	drawing

We	may	start	by	adding	various	shapes	to	our	Pygame	window.

rectangle

One	of	the	default	shapes	is	a	standard	rectangle,

e.g.

pygame.draw.rect(window,	WHITE,	(200,	200,	100,	50))
pygame.draw.rect(window,	CYAN,	(300,	150,	100,	100))
pygame.draw.rect(window,	MAGENTA,	(400,	100,	100,	150))

The	parameters	for	these	functions	use	the	following	example	pattern,

where	we	want	to	draw	the	shape
e.g.	the	Pygame	window

the	RGB	colour	for	our	shape

e.g.	 (255,	255,	255)

pixel	coordinates	for	drawing	the	shape
x	and	y	coordinates
x	=	position	of	left	side	of	shape	from	left	side	of	window
y	=	position	of	top	of	shape	from	top	of	window

and	the	size	of	the	shape
width	and	height	in	pixels

pygame.draw.rect(WHERE,	(R,	G,	B),	(X,	Y,	WIDTH,	HEIGHT))

If	we're	adding	multiple	rectangles,	or	other	shapes,	we	may	also	update	the	rendering	of	the	Pygame	window	before
flipping,	e.g.

...
pygame.display.update()
...

circle

Similar	to	drawing	a	rectangle	or	square,	we	may	also	draw	circles	on	a	Pygame	window.

Instead	of	simply	passing	a	width	and	height,	we	need	to	define	a	radius	and	a	point	around	which	the	circle	may	be
drawn.

For	example,	we	can	draw	a	circle	as	follows,

pygame.draw.circle(window,	WHITE,	(150,	100),	30,	0)

which	equates	to	the	following	parameters,

pygame.draw.circle(WHERE,	(R,G,B)	(X,	Y),	RADIUS,	LINE_WIDTH)

For	a	circle,	 LINE_WIDTH 	represents	the	width	of	the	line	used	to	draw	the	defined	circle.	If	we	pass	 0 ,	we	get	a
circle	that	is	filled	in	with	the	defined	RGB	colour.	However,	if	we	set	the	 LINE_WIDTH 	to	 2 	the	rendered	circle	would
be	empty	with	a	2	pixel	wide	outline.

ellipse

We	may	also	draw	ellipses,	which	use	a	similar	pattern	to	drawing	a	rectangle.	e.g.

pygame.draw.ellipse(window,	GREEN,	(200,	50,	100,	30))

It's	also	possible	to	create	circles	using	an	ellipse	by	simply	setting	the	width	and	height	parameters	to	the	same
value.

If	we	created	a	rectangle	with	the	same	values	as	our	ellipse,	we	would	see	that	the	ellipse	fits	exactly	within	our
rectangle.	e.g.

#	draw	an	ellipse	&	containing	rectangle	-	extra	2	is	for	width	of	rect	border
pygame.draw.ellipse(window,	GREEN,	(200,	50,	100,	30))
pygame.draw.rect(window,	GREEN,	(200,	50,	100,	30),	2)

The	extra	value	for	 rect 	indicates	the	width	of	the	rectangle's	drawn	border.	This	follows	the	same	pattern	as	the
circle	rendering.

triangles	&c.

To	create	triangles	and	other	shapes,	including	a	pentagon,	hexagon,	or	octagon,	we	can't	use	an	existing	function.
Instead,	we	need	to	use	paths,	which	allow	us	to	draw	such	irregular	shapes.

We're	able	to	draw	these	shapes	by	defining	points	on	our	canvas,	then	drawing	lines	between	these	points,	and	filling
the	shape	with	a	defined	colour	where	necessary.

We	can	draw	a	line	using	the	following	example,

pygame.draw.line(window,	WHITE,	(250,	250),	(175,	175),	1)

We	follow	the	same	general	pattern	seen	for	other	shapes.	So,	we	start	by	adding	where	to	draw	the	line,	and	the
RGB	colour.	The	next	argument	for	creating	a	line	is	a	tuple	for	the	X	and	Y	coordinates	of	the	start	position	of	the	line.
Then,	we	need	to	add	the	X	and	Y	coordinates	for	the	end	of	the	line,	and	the	width	of	the	line	to	draw.

Now,	unless	we	require	multiple	variant	arguments	for	our	lines,	we	may	now	combine	the	drawing	to	create	our
triangle.	For	example,

pygame.draw.lines(window,	WHITE,	True,	((400,	350),	(450,	400),	(350,	400),	1))

By	adding	the	argument	 True ,	Pygame	will	close	a	shape	for	us.	If	we	set	it	to	 False ,	the	first	two	lines	of	a
triangle,	for	example,	will	be	drawn	but	not	the	final	third	line.

