
Pygame	-	Dev	Notes	-	Animation	-	Colour	Scale
A	few	notes	on	modifying	colours	in	animations	with	Pygame.

Contents

Intro
Colour	Scales

Intro

We	may	use	animation	with	Pygame	to	create	many	different	effects	within	our	games,	including	dynamically	updating
colours	and	colour	scales.

Colour	scales

We	can	use	the	RGB	colour	scale	to	animate	colour	changes	in	shapes,	e.g.

#	rgb	colours	for	rect
rectRed	=	random.randint(0,	255)
rectGreen	=	random.randint(0,	255)
rectBlue	=	random.randint(0,	255)

#	create	game	loop
while	True:
				#	set	clock
				msElapsed	=	clock.tick(max_fps)
				#print(msElapsed)
				#	'processing'	inputs	(events)
				for	event	in	pygame.event.get():
								if	event.type	==	pygame.QUIT:
												gameExit()
				#print(elapsedSecs)
				if	rectRed	>=	255:
								rectRed	=	random.randint(0,	255)
				else:
								rectRed	+=1
				if	rectGreen	>=	255:
								rectGreen	=	random.randint(0,	255)
				else:
								rectGreen	+=1
				if	rectBlue	>=	255:
								rectBlue	=	random.randint(0,	255)
				else:
								rectBlue	+=1
				#	draw
				window.fill(WHITE)
				pygame.draw.rect(window,	(rectRed,	rectGreen,	rectBlue),	(50,	50,	winWidth	/	2,	
winHeight	/	2))

				#	update	the	display	window...
				pygame.display.update()

So,	we	can	modify	a	rectangle's	colour	as	we	execute	each	iteration	of	the	game	loop.	We	add	some	conditional
statements	to	check	if	our	RGB	values	are	about	to	go	over	255.	If	yes,	then	we	assign	them	a	random	value	using	the
standard	RGB	scale,	0	to	255.

The	rectangle	slowly	changes	colour	by	1	value	per	execution	of	the	game	loop,	simply	adding	1	to	each	R,	G,	and	B
value.

