
Comp 388/488 - Game Design and Development

Spring Semester 2019 - Week 9

Dr Nick Hayward

Games and formal elements

importance of objectives

objectives may help establish different requirements and goals in a game

helping a user to achieve results within the confines of the rules of the game

objectives may seem challenging and difficult

need to be correctly designed relative to a game's rules

they should also seem achievable to a player

a game's objective may also help set the tone for gameplay and interaction

e.g. objective of most platform games different from sports-based game

tone for each of these games becomes a reflection of the objective

use of objectives in games is not limited to just the overall game itself

may consider defining an objective for different player roles

or perhaps as mini challenges within our games

each level may define its own objective

such as completing a level as fast as possible

collecting all available options (coins, for example) on another

choice of such objectives needs to be considered carefully

each will affect not only the formal system of our game

but also the dramatic aspect

good integration of objectives in the premise or story of a game

helps strengthen dramatic aspects

e.g. Legend of Zelda

Games and formal elements

a consideration of procedures

we may start to see a few common actions that exist across multiple

genres

these often include the following:

an action to start the game
specific procedure required to initiate gameplay...

ongoing actions and procedures
e.g. common, persistent actions that continue, repeat &c. as part of the game

reserved or special actions
e.g. actions that may be required and executed due to a given condition or game
requirement

actions to conclude or resolve
e.g. resolve actions at certain points within the game, or at the end of the game itself...

for video games, incl. consoles, mobile, PC...

such actions and procedures closely associated player interactions

e.g. given key combinations or controller buttons

perhaps tapping particular options on the screen itself

or moving a mobile device to control certain actions...

consider Super Mario Bros.

we may clearly identify controls for given actions and procedures
expected usage for directional buttons
option to jump or swim with the A button, &c.

Games and formal elements

procedures in development

procedures also play a key role in the way we develop our games

we can add procedures within the logic of our game

to monitor certain ongoing states, user interaction, updates, rendering...

these procedures are working in the core of our game

responding to changes in state

e.g. a player completes a puzzle within the main game

need to monitor the ongoing puzzles responses

check the player input and interactions

then update the state of the game in response to a success or failure result

we're effectively checking whether a given action succeeds or not

then, determine impact this may have on the game itself

such procedures and actions are naturally limited by real-world constraints

e.g. performance of the underlying system, controllers, interaction options, screen...

may need to tailor such requirements to match the type of game we're

developing

and the target audience...

Python and Pygame - Game Example 1

animating sprite images - part 1

for many game sprites it's fun and useful to add different animations

to animate different states, actions, &c. as the game progresses...

e.g. random rotation of mob objects, explosions, collisions...

already added scale transform to mob objects

we may use the same pattern to add a rotate option

add animation to these sprites as they move down the game window

e.g. start by setting some variables for our rotation,

due to the framerate of this game, set to 60FPS

need to ensure rotate animation does not occur for each update of the game loop

if not, rotation will be too quick, unrealistic, annoying...

set up rotation for sprite image - default rotate value, rotate speed to add diff. direct

self.rotate = 0

self.rotate_speed = random.randrange(-7, 7)

Python and Pygame - Game Example 1

animating sprite images - part 2

in addition to the rotate animation

also need to consider how to create a timer for this animation

regularity of update to the animation to ensure it renders realistically

already a timer available within our existing code

currently using to monitor the framerate for our game

use this timer to check the last time we updated our mob sprite image

set a time to rotate the sprite image

then check this monitor as it reaches this specified time

record last time our sprite image was rotated by getting the time

number of ticks since the game started, e.g.

check timer for last update to rotate

self.rotate_update = pygame.time.get_ticks()

each time the mob sprite image object is rotated

update value of variable to record the last time for a rotation

modify the mob sprite's update function as follows,

call rotate update

self.rotate()

simply going to call a separate rotate function

keep the code cleaner and easier to read

allows us to quickly and easily modify, remove, and simply stop our object's rotation

Python and Pygame - Game Example 1

rotate

now add our new rotate() function

start by checking if it's time to rotate the sprite image

def rotate(self):

 # check time - get time now and check if ready to rotate sprite image

 time_now = pygame.time.get_ticks()

 # check if ready to update...in milliseconds

 if time_now - self.rotate_update > 70:

 self.last_update = time_now

uses the current time, relative to the game's timer

then checks this value against the last value for a rotate update

if difference is greater than 70 milliseconds

it's time to rotate the sprite object

Python and Pygame - Game Example 1

rotate issues

for rotation we can't simply add a rotate transform to the rotate()
function

possible in the code, it will also cause the game window to practically freeze

makes the game unplayable in most examples, e.g.

self.image = pygame.transform.rotate(self.image, self.rotate_speed)

this issue is due to pixel loss for the image

each rotation of a sprite object image

causes a game's logic to lose part of the pixels for that image

this will cause the game loop to start to freeze...

Python and Pygame - Game Example 1

correct rotation

correct this rotation issue by working with an original, pristine image for

the sprite object

set pristine original image for sprite object

self.image_original = mob_img

set colour key for original image

self.image_original.set_colorkey(BLACK)

then, set the initial sprite object image as a copy of this original

set copy image for sprite rendering

self.image = self.image_original.copy()

then, we may use the pristine original image with the rotation

self.image = pygame.transform.rotate(self.image_original, self.rotate_speed)

Python and Pygame - Game Example 1

correct rotation speed

another issue we need to fix is the rotation speed for a sprite object

image

if we simply use our default self.rotate_speed
not keeping track of how far we've actually rotated the image

need to keep a record of incremental rotation of the image

ensure that it rotates smoothly and in a realistic manner

monitor this rotation by using the value of the rotation

adding rotation speed for each update to a sprite object image

as the image rotates we can simply check its value as a modulus of 360

to ensure it keeps rotating correctly

self.rotate = (self.rotate + self.rotate_speed) % 360

self.image = pygame.transform.rotate(self.image_original, self.rotate)

Python and Pygame - Game Example 1

rect rotation issues

still have an issue with the rectangle bounding box, which does not rotate

as sprite image rotates, it loses its centre relative to the bounding

rectangle

to correct this issue, we can now modify our logic for the sprite object's

update, e.g.

new image for rotation

rotate_image = pygame.transform.rotate(self.image_original, self.rotate)

check location of original centre of rect

original_centre = self.rect.center

set image to rotate image

self.image = rotate_image

create new rect for image

self.rect = self.image.get_rect()

self.rect.center = original_centre

mob sprite object images will now correctly rotate as they move down

the screen

resources

notes = sprites-animating-images.pdf

code = animatingsprites1.py

game example

shooter0.6.py

animating sprite images
rotate mob images down the screen
create pristine image for rotation
update rect bounding box to ensure it rotates correctly

Video - animating sprites

rotation

Video - Shooter 0.6

animating sprite images

Games and formal elements

rules and game concepts

as we define and formalise rules for our games

need to consider more than simply the gameplay itself

objects in games, and concepts embedded in gameplay structures

require defined limitations and rules

game objects

characters, weapons, vehicles, obstacles...

may be derived or inspired by real world objects

objects may come with the perception of existing limitations and rules

a player knows what these objects can and cannot do in the real world

we may use these real world objects as inspiration

starting points for our game's objects

not inherently limited or defined by them

may modify as befits the requirements of our game, and its gameplay

game context will be a determining factor in development of our objects

objects may also be developed as a group of properties and variables

together form the whole from varying requirements

in a world of chivalry, knights, ogres, and other fantastical creatures

we may still create concepts and objects that unify these characters

from base objects, we can simply inherit and modify as needed

e.g. we may require various characters to ride

on horseback, or perhaps astride an elephant, or even a fictional dragon &c.

our objects may be abstracted to include known attributes

which can then be used as the parent

use for multiple real and imagined objects, characters within our game

Games and formal elements

rules, objects, and updates...

as developers and designers

need to ensure a balance between maintaining game objects and variables

creating an intuitive update for our users

unlikely our player will want to keep a manual tally of such updates

need to consider how we may allow them to quickly and easily intuit game objects

for example, we may need to

maintain a running total of game objects, such as coins, lives, energy levels

correctly inform the player of any updates

a player should be able to quickly learn the nature of these objects

if they're too difficult or complex

need to consider how this affects our player's gaming experience

also need to ensure that there is sufficient isolation between different

objects

a player should be able to discern differences without too much effort or

guesswork

updates may also be influenced by known restrictions in the game's rules

useful in many respects

e.g. relative to boundaries, objectives, and objects themselves

by establishing rules, e.g.

to restrict objects and their attributes

rules help create a known scale for state within our game

player has defined restrictions

they know what they can and can't do

risk and reward is set in the game's logic and gameplay

Python and Pygame - Game Example 1

random mob sprite images

as we add sprite image objects to a game window, e.g. multiple mob images

we can make the game experience more fun

by randomising the image for each mob sprite object

we may use a group of images as possible mob images

then randomise their selection for each new mob sprite object image

to add random image, at least randomised from potential options...

need to add a list of available images for the random selection, e.g.

also need a new list for our asteroid images, e.g.

asteroid_imgs = []

simply need to loop through this asteroid list

then add each available image to the list of asteroid_imgs, e.g.

for img in asteroid_list:

 asteroid_imgs.append(pygame.image.load(os.path.join(img_dir, img)).convert())

then update the Mob class to set a random image from asteroid_imgs
list, e.g.

self.image_original = random.choice(asteroid_imgs)

images for our mob sprite objects will now be randomly chosen from the

available list of images

resources

notes = sprites-animating-random-images.pdf

code = animatingsprites2.py

game example

shooter0.7.py

set random image for mob sprite object image

random image from selection of image options

asteroid_list = ["asteroid-tiny-grey.png", "asteroid-small-grey.png", "asteroid-med-grey.pn

rotate and animate each random mob sprite image

Video - Animating Sprites

random mob images

Video - Shooter 0.7

set random image for mob sprite object image

Game designers

Designer example - Will Wright

Wright is a veteran American game designer

best known for his work on The Sims

The Sims was originally released in 2000

led to countless versions, spin-offs &c.

driven a genre more interested in participation than a definitive win

as a co-founder of Maxis, and then later part of EA

Wright also developed the game Spore

he's often referred to as a designer of software toys instead of traditional

games

a consideration of the non-traditional structure employed for many of his games

he's also been a passionate developer of, and advocate for, emergent and

adaptive systems

Wright has continued to develop this concept for many of his games

his legacy is evident in games such as Spore, The Sims 3 and The Sims 4

Wright has tried to use these systems with their simple rules and

definitions

to provide the possibility for the development of complex, detailed outcomes

Resources

Maxis

The Sims

Spore

Will Wright

https://en.wikipedia.org/wiki/Maxis
https://en.wikipedia.org/wiki/The_Sims
https://en.wikipedia.org/wiki/Spore_(2008_video_game)
https://en.wikipedia.org/wiki/Will_Wright_(game_designer)

Image - Will Wright

Will Wright

Image - Will Wright

The Sims and Spore

The Sims

Video - Will Wright

The Sims Creator...

Summit on Science, Entertainment, and Education - Will Wright - Vimeo

https://vimeo.com/22670388

Python and Pygame - Game Example 1

render text to a game window - intro

drawing text to a game window in Pygame can become a repetitive

process

in particular, as part of each window update

we may abstract this underlying game requirement to a text output

function

 # text output and render function - draw to game window

def textRender(surface, text, size, x, y):

 # specify font for text render

 ...

start by specifying a surface where we need to draw the text

plus text to render, its size, and coordinates relative to surface

need to specify a font for the text to be rendered

reliant upon installed fonts for user's local system

use a font-match function with Pygame

helps abstract specification of exact font to a relative name

specify font name to find

font_match = pygame.font.match_font('arial')

Pygame will search local system for a font with the specified name

use specified font to create an object for the font

we need this object to render text in the game window

specify font for text render - uses found font and size of text

font = pygame.font.Font(font_match, size)

Python and Pygame - Game Example 1

render text to a game window - text drawing

text we'll be adding to the game window needs to be drawn

drawn effectively pixel by pixel

Pygame calculates drawing for each pixel

creates the specified text in the required font

start by specifying a surface to draw the required pixels for the text, e.g.

surface for text pixels - TRUE = anti-aliased

text_surface = font.render(text, True, WHITE)

we're specifying where to draw the text

the text to draw to the game window

a boolean value for anti-aliasing of text

and the text colour

need to calculate a rectangle for placing the text surface, e.g.

get rect for text surface rendering

text_rect = text_surface.get_rect()

then specify where to position our text surface

relative to defined x and y coordinates, e.g.

specify a relative location for text

text_rect.midtop = (x, y)

text is then added to the surface using the standard blit function, e.g.

add text surface to location of text rect

surface.blit(text_surface, text_rect)

Python and Pygame - Game Example 1

render text to a game window - text draw function

overall text draw function is now as follows,

text output and render function - draw to game window

def textRender(surface, text, size, x, y):

 # specify font for text render - uses found font and size of text

 font = pygame.font.Font(font_match, size)

 # surface for text pixels - TRUE = anti-aliased

 text_surface = font.render(text, True, WHITE)

 # get rect for text surface rendering

 text_rect = text_surface.get_rect()

 # specify a relative location for text

 text_rect.midtop = (x, y)

 # add text surface to location of text rect

 surface.blit(text_surface, text_rect)

call this function whenever we need to render text to our game window

in draw section of our game loop, now add the following call, e.g.

draw text to game window - game score

textRender(window, str(game_score), 16, winWidth / 2, 10)

Python and Pygame - Game Example 1

render text to a game window - add a game score

common example of rendering text in a game window

simply output a running score for the player

start by adding an initial variable to record the player's score, e.g.

initialise game score - default to 0

game_score = 0

then allow a player to score points for each projectile collision on a mob

object

e.g. laser beam hit on an asteroid

fun to set variant points relative to size of mob object

if we use the radius of each mob object

perform a quick calculation for each collision

work out points per asteroid, e.g.

calculate points relative to size of mob object

game_score += 40 - collision.radius

relative to the recorded collision
simply get the radius per hit mob object

then minus from a known starting value

resources

notes = drawing-text.pdf

code

drawingtext1.py (game example with score)

drawingtext2.py (abstracted - simple rendered text)

game example

shooter0.8.py

draw text to the game window

keep a running score for collisions with a projectile

player shoots and destroys an asteroid

score is calculated relative to size of mob object - radius...

score is rendered to top of game window

update for each successful hit

Video - Shooter 0.8

render text for a game score

Games and dramatic elements

intro

may consider dramatic elements as we continue to design and develop our

games

already considered many underlying elements and concepts that create a

game we recognise

also need to consider those elements that create...

a sense of emotion,

engagement

and challenge for our players

aspects of our game that encourage an emotional connection

simple desire to invest time and effort in gameplay

dramatic elements help create a sense of context to a player's

experience with our game

dramatic elements provide a backdrop/overlay for our game

combines many disparate formal elements of our game logic and development

creates a conceptually meaningful experience for the player

may start with universal concepts for such dramatic elements

including challenge and play

then branch out into more complicated considerations of elements, e.g.

characters, premise, story...

used by most games we design, develop, and play

used to form core for explaining many of more abstract elements of a

game's formal system

help create a deeper sense of connection between the game and its player

Games and dramatic elements

gaming challenge

challenge and an associated sense of accomplishment

fundamental definition of gaming for many players

perception of worthwhile gaming experience

challenge alone is often no different from work, daily issues...

designers need to find a happy balance to challenge and reward

need to consider tasks that are satisfying to complete and provide a

balance between work and fun

designers are inherently limited by the abilities and skills of an individual

player

challenge may also become an individual perception and characteristic of a

player

consider difference between age groups, skill levels, experience...

challenge may also be considered dynamic

a player's ability will adapt and improve

hopefully as they learn and progress through a game

a challenging early task may become considerably easier

i.e. as a player progresses to subsequent levels and areas within a game

as a player learns these new skills

enjoys opportunity to test and demonstrate these skills elsewhere in the game

incremental modifications and updates to earlier, completed challenges

provides a quick and easy option for the player to balance challenge with reward

designers and developers need to consider challenge carefully

challenge that is not necessarily defined by individual experience

Games and dramatic elements

a sense of flow

carefully consider how to design our games to effectively consider

challenge

as defined and restricted by individual experience, &c.

each experience can, therefore, take advantage of an appropriate level of

challenge

a well-known example of this was developed by the psychologist Mihaly

Csikszentmihalyi

he wanted to identify concepts and elements that might help define

enjoyment for a given task

he studied experiences and similarities of various tasks for different people

trying to discern similarities of experience for these tasks, players...

his research noted a distinct lack of traditionally perceived bias

for what we consider fun and meaningful tasks

lack of bias in results for age, social standing, gender...

people simply described their perception of enjoyable activities in a similar

manner

regardless of the activity itself

often included disparate pursuits such as music, painting, and playing games...

the words and concepts people used to articulate this sense of fun was largely the same

for each of these tasks

certain conditions became recurrent and popular for describing pleasurable activities

each user and player was entering into a state of flow

allowed for this heightened sense of achievement, and associated fun

Games and dramatic elements

perceptions of flow

Flow by Mihaly Csikszentmihalyi

player's creativity, ability, and general awareness are high

performance of activity occurs naturally and unconsciously

player experiences deep concentration and immersion in their current

activity

player is effectively both alert and relatively relaxed

living in the moment

a sensation of being so engrossed in an activity a player is unaware of the passage of
time

balancing interest and challenge

player is confident and exhibits a sense of control over their current

situation

player is working progressively towards achieving a specific goal, e.g.

getting to the next level in a game

completing a mini-challenge

or mastering a particular mechanic for their current character

Luigi's Mansion and the vacuum cleaner...

TED 2004 - Flow, the secret to happiness

http://www.ted.com/talks/mihaly_csikszentmihalyi_on_flow

Image - Games and dramatic elements

a state of flow

A state of flow

Video - Colin McRae Rally

Source - Colin McRae Rally, YouTube

Colin McRae Rally - Out Now on iOSColin McRae Rally - Out Now on iOSColin McRae Rally - Out Now on iOS

https://www.youtube.com/watch?v=Ig5qQR6_9cw
https://www.youtube.com/watch?v=Ig5qQR6_9cw
https://www.youtube.com/channel/UCOUSFYOP-dILZAjUwytbzOQ

Fun and Games

Driving game example

Colin McRae Rally - Playstation

http://www.ps1fun.com/play/colin-mcrae-rally/1197

Python and Pygame - Game Example 1

game music and sound effects - intro

most of these sound effects will use a WAV format

may also use other file formats such as OGG

add these files for our sound effects to the game assets directory, e.g.

|-- shootemup

 |-- assets

 |-- images

 |__ ship.png

 |-- sounds

 |__ laser-beam-med.wav

 |__ explosion-med.wav

Python and Pygame - Game Example 1

game music and sound effects - import sounds and effects

we need to add support for Pygame's mixer
add the following call after we initialise Pygame itself, e.g.

add sound mixer to game

pygame.mixer.init()

to use these sounds and effects in our game window

need to add the directory location, e.g.

relative path to music and sound effects dir

snd_dir = os.path.join(assets_dir, "sounds")

then start to add our required music and sound effects, e.g.

load music and sound effects for use in game window

laser beam firing sound effect

laser_effect = pygame.mixer.Sound(os.path.join(snd_dir, 'laser-beam-med.wav'))

explosion sound effect

explosion_effect = pygame.mixer.Sound(os.path.join(snd_dir, 'explosion-med.wav'))

add these lines of code right after we've loaded our images

just before we start the game loop itself

Python and Pygame - Game Example 1

game music and sound effects - use sound effects

after importing and loading our sound effects

we may then choose where we need to play these sound effects in our game

e.g. player fires a laser beam to destroy falling mob objects

fire projectile from top of player sprite object

def fire(self):

 ...

 # play laser beam sound effect

 laser_effect.play()

also add sound effects for each mob object explosion

play laser beam sound effect

laser_effect.play()

Python and Pygame - Game Example 1

game music and sound effects - use music in a game

as we add sound effects, we may also load music to play in the game

we may add background music for the game window, e.g.

load music for background playback in game window

pygame.mixer.music.load(os.path.join(snd_dir, 'space-music-bg.ogg'))

also set a relative volume for this background music

creates ambience and does not overwhelm the player experience, e.g.

set music volume - half standard volume

pygame.mixer.music.set_volume(0.5)

resources

notes = music-intro.pdf

code

basicmusic1.py

basicmusic2.py

game example

shooter0.9.py

add music and sound effects to the game window

add pygame mixer

load sounds directory in assets

load required sounds and sound effects

call play() for each required sound effect and game music...

Video - Shooter 0.9

add music and sound effects

Games and dramatic elements

consider skills

start introducing challenges and associated activities into our games that

require definable skills

may be a mixture of assumed or learnt skills, applicable to the current

game

for flow, Csikszentmihalyi describes it relative to activities that are

considered,

goal-directed and bounded by rules...

Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience. Harper &

Row. New York. 1990. P.49.

such activities not customarily achieved or completed without proper

requisite skills

skills may include various examples, including

standard motor skills for controls and interaction

problem solving

social interaction with other players...

challenges, and the development of skills, need not necessarily be limited

e.g. by simple clicking of buttons, and the resultant moving of pixels...

a common trick to manipulate such skills is the introduction of doubt or

variance

imagine a challenge or task where the ending is not known or guaranteed

e.g. a player's character walking along a ledge

may be wet underfoot

perception of wind blowing from any direction

random mob objects falling

varying time due to health status...

underlying motor skills, for example, are the same for the player's

character

but the end result has now been challenged and thrown into doubt

Games and dramatic elements

a story and premise

a premise becomes a wrapper or container for our game

we may use to create a sense of context for such challenges, skills, and fun

a sense of story...

each game we design and develop will include such a premise

might be a single concept or a detailed dramatic backdrop

our games will often leverage a few well-known dramatic elements

help create a player's connection and interest in a game's formal elements

use premise to help identify the game's formal elements within a setting or

a metaphor

without a sense of context and setting

we may abstract mechanics, gameplay, and skills too far

reducing sense of fun for our player

consider difference between an outline of initial game logic and the

wrapper a premise provides

Games and development

quick exercise

Consider the following metaphors,

The skies of his future began to darken

Her voice is music to his ears

The ballerina was a swan, gliding across the stage

A heart of stone

Choose two of the above metaphors, and consider

the following:

how might your chosen metaphors shape the premise and story of a

game?

how might the premise of this game influence mechanics and skills for

characters?

how may you use such skills to create challenges in the game?

how do your chosen metaphors, and the inferred premise, wrap this

game's formal elements?

Python and Pygame - Game Example 1

health and status - intro

may add a status bar for a player's health, lives, &c.

then dynamically update it relative to a defined health value

e.g. a percentage value we decrement per collision

current game only gives a player one chance to shoot and destroy mob

objects

in effect, player currently has one life

one player life is not expected for most shooter style game...

may now consider monitoring and updating the status of a player's health

e.g. as they are hit by advancing mob objects

protect our player, and their ship, using a Star Trek style shield

may offer full protection initially

then incrementally weaken with each hit from a mob object

weakens until it eventually fails at value 0

set a default for this shield in the Player class,

set default health for our player - start at max 100% and then decrease...

self.stShield = 100

Python and Pygame - Game Example 1

health and status - collisions and shields

need to modify our logic for a mob collision to ensure we handle such

objects better

may now reflect a decrease in the player's shield, health...

instead of allowing a mob object to continue after it has collided with the

player

now need to remove it from the game window

if we don't update this boolean to True
each mob object will simply continue to hit the player

hit registered as it moves, pixel by pixel, through the player's ship

single hit would quickly become compounded in the gameplay

update for this check, e.g.

as our player may be hit by multiple mob objects

also need to update our check from a simple conditional to a loop

check possible collisions...

check collisions with player's ship - decrease shield for each hit

for collision in collisions:

 # decrease player's shield for each collision

 player.stShield -= 20

 # check overall shield value - quit game if no shield

 if player.stShield <= 0:

 running = False

add check for collision - enemy and player sprites (True = hit object is now deleted from

collisions = pygame.sprite.spritecollide(player, mob_sprites, True, pygame.sprite.collide_c

Python and Pygame - Game Example 1

health and status - replace mob objects

we still have an issue with losing mob objects

if they collide with the player's ship

follows same underlying pattern as player's laser beam firing on mob objects

need to create a new object if it is removed after a collision

a familiar pattern we may now abstract

creation of mob objects to avoid repetition of code, e.g.

create a mob object

def createMob():

 mob = Mob()

 # add to game_sprites group to get object updated

 game_sprites.add(mob)

 # add to mob_sprites group - use for collision detection &c.

 mob_sprites.add(mob)

simple abstracted function allows us to easily recreate our mob objects

by creating a mob object

adding it to the overall group of game_sprites

then the specific group for the game's mob_sprites

then call this function if a mob object collides with a projectile, player's

ship...

also call this function when we initially create our new mob objects

create a new mob object

createMob()

Python and Pygame - Game Example 1

health and status - health status bar

already defined a default maximum for our player's shield

now start to output its value to the game window

we could simply output a numerical value

as we did for the player's score

more interesting to show a graphical update for the status of a player's

health

define a new draw function to render a visual health bar for player's shield,

e.g.

draw a status bar for the player's health - percentage of health

def drawStatusBar(surface, x, y, health_pct):

 # defaults for status bar dimension

 BAR_WIDTH = 100

 BAR_HEIGHT = 10

 # use health as percentage to calculate fill for status bar

 bar_fill = (health / 100) * BAR_WIDTH

 # rectangles - outline of status bar &

 bar_rect = pygame.Rect(x, y, BAR_WIDTH, BAR_HEIGHT)

 fill_rect = pygame.Rect(x, y, bar_fill, BAR_HEIGHT)

 # draw health status bar to the game window - 1 specifies pixels for border width

 pygame.draw.rect(surface, GREEN, fill_rect)

 pygame.draw.rect(surface, WHITE, bar_rect, 1)

function accepts four parameters, which allow us to define

a surface for rendering

its x and y location in the game window

then update the status of the player's health

set a default width and height for the status bar

then specify how much of this bar needs to be filled with colour

colour fill relative to the player's current health status...

health status can be calculated as a percentage

allows us to easily modify the relative sizes for the status bar

resources

notes = player-health-intro.pdf

code = playerhealth1.py

Python and Pygame - Game Example 1

fun game extras - intro

now start to add some fun extras to the general gameplay

help improve the general player experience

a few examples

modify health status bar to better reflect health percentages

auto fire for the laser beam to continuously shoot using space bar

fun explosions for collisions

many more...

Python and Pygame - Game Example 1

fun game extras - update health status colours

modify health status bar to more accurately inform player of ship's health

common option is to simply modify colour of status bar to reflect health

status

we may use a bright colour to indicate greater health status

then change it to RED as a warning to the player, e.g.

if bar_fill < 40:

 pygame.draw.rect(surface, RED, fill_rect)

else:

 pygame.draw.rect(surface, CYAN, fill_rect)

game example

shooter1.0.py

check player's health

set default health to 100%

decrement health per collision
quit game when health reaches 0

draw status bar to game window
green colour for good health
change to red colour below 40%

Video - Shooter 1.0

check player's health

Python and Pygame - Game Example 1

fun game extras - repetitive firing sequence - intro

add a repetitive firing sequence for the player's sprite object

in our current game logic

as a player presses down on the space bar a laser beam will be fired from the top of the
player's ship

one press is equal to one firing sequence...

to add a repetitive firing sequence

need to still check that the spacebar has been pressed down

but now continue to fire a laser beam until the key is released

in our Player class we can add some new variables, e.g.

specify the delay in milliseconds between each firing of the laser beam

check the time, the number of ticks, since the last beam was fired

e.g. update Player class as follows,

...

firing delay between laser beams

self.firing_delay = 200

time in ms since last fired

self.last_fired = pygame.time.get_ticks()

Python and Pygame - Game Example 1

fun game extras - repetitive firing sequence - fire - part 1

add a listener for the space bar event to the update() method in the

Player class

check space bar for firing projectile

if key_state[pygame.K_SPACE]:

 # fire laser beam

 self.fire()

update our fire() method to reflect this repetitive firring sequence, e.g.

...

get current time

time_now = pygame.time.get_ticks()

if time_now - self.last_fired > self.firing_delay:

 self.last_fired = time_now

 ...

Python and Pygame - Game Example 1

fun game extras - repetitive firing sequence - fire - part 2

our fire() method has now been updated as follows,

fire projectile from top of player sprite object

def fire(self):

 # get current time

 time_now = pygame.time.get_ticks()

 if time_now - self.last_fired > self.firing_delay:

 self.last_fired = time_now

 # set position of projectile relative to player's object rect for centerx and top

 projectile = Projectile(self.rect.centerx, self.rect.top)

 # add projectile to game sprites group

 game_sprites.add(projectile)

 # add each projectile to sprite group for all projectiles

 projectiles.add(projectile)

 # play laser beam sound effect

 laser_effect.play()

remove listener for a space bar event in the events section of the game

loop

resources

notes = extras-part1-firing.pdf

code = repetitivefiring.py

game example

shooter1.1.py

add repetitive firing sequence for player's laser beam

move keypress check for space bar to player class

fire laser beam whilst space pressed down

set interval in ms for firing sequence

check time between now and last firing

Video - Shooter 1.1

add repetitive firing sequence...

Demos

pygame random sprites

animatingsprites2.py

pygame drawing text

drawingtext1.py (game with text)

drawingtext2.py (simple rendered text)

pygame music and sound effects

basicmusic1.py

basicmusic2.py

pygame health and status

playerhealth1.py

pygame extras

repetitivefiring.py

pygame - Game 1 Example

shooter0.6.py

shooter0.7.py

shooter0.8.py

shooter0.9.py

shooter1.0.py

shooter1.1.py

Games

Colin McRae Rally

Diablo - Wikipedia

Diablo III - console

http://pcgamingwiki.com/wiki/Colin_McRae_Rally
https://en.wikipedia.org/wiki/Diablo_(video_game)
https://us.battle.net/d3/en/console/

Game notes

Pygame

sprites-intro.pdf

sprites-set-image.pdf

sprites-control.pdf

sprites-animating-images.pdf

sprites-animating-random-images.pdf

drawing-text.pdf

music-intro.pdf

player-health-intro.pdf

extras-part1-firing.pdf

Resources

Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience. Harper &

Row. New York. 1990.

Various

The Sims - Free Will

http://sims.wikia.com/wiki/Free_will

Videos

Colin McRae Rally - YouTube

TED 2004 - Flow, the secret to happiness

https://www.youtube.com/watch?v=Ig5qQR6_9cw
http://www.ted.com/talks/mihaly_csikszentmihalyi_on_flow

