
Comp 388/488 - Game Design and Development

Spring Semester 2019 - Week 7

Dr Nick Hayward

Python and Pygame - Game Example 1

shooter style game - STG

start creating our first full game example

shooter example - STG in Japan

this game will help us design, develop, and test the following:

user control

enemy objects

collision detection

firing projectiles at enemies

destroying enemy objects

add custom sprites and graphics

improve the collision detection

start animating sprite images

radomise enemy objects to create greater challenges

keep a running game score and render to game window

add game music and sound effects

check our player's health...

add some fun game extras
e.g. health status, explosions...
lots more...

Python and Pygame - Game Example 1

add more objects - mob

now start to add extra sprite objects to our game window

commonly given a collective, generic name of mob

add the following class Mob to our game

create a generic mob sprite for the game - standard name is *mob*

class Mob(pygame.sprite.Sprite):

 def __init__(self):

 pygame.sprite.Sprite.__init__(self)

 self.image = pygame.Surface((20, 20))

 self.image.fill(CYAN)

 # specify bounding rect for sprite

 self.rect = self.image.get_rect()

 # specify random start posn & speed of enemies

 self.rect.x = random.randrange(winWidth - self.rect.width)

 self.rect.y = random.randrange(-100, -50)

 self.speed_y = random.randrange(1, 10)

 def update(self):

 self.rect.y += self.speed_y

with this class we can create extra sprite objects

set their size, colour, &c.

then set random x and y coordinates for the starting position of the sprite object

use random values to ensure that the objects start and move from

different positions

from the top of the game window

then progress in staggered groups down the window...

Python and Pygame - Game Example 1

update extra objects

as our enemy objects move down the game window

need to check if and when they leave the bottom of the game window

we can add the following checks to the update function

as each sprite object leaves the bottom of the game window

we can check its position

then, we may reset the sprite object to the top of the game window

need to ensure that the same sprite object does not simply loop around

and then reappear at the same position at the top of the game window

becomes too easy and tedious for our player...

instead, we can reset our mob object to a random path down the window

should make it slightly harder for our player

also ensure that each extra sprite object has a different speed

by simply randomising the speed along the y-axis per sprite object

 def update(self):

 self.rect.y += self.speed_y

 # check if enemy sprite leaves the bottom of the game window - then randomise at th

 if self.rect.top > winHeight + 15:

 # specify random start posn & speed of enemies

 self.rect.x = random.randrange(winWidth - self.rect.width)

 self.rect.y = random.randrange(-100, -50)

 self.speed_y = random.randrange(1, 7)

Python and Pygame - Game Example 1

show extra objects

now create a mob group as a container for our extra sprite objects

group will become particularly useful as we add collision detection later in

the game

update our code as follows, e.g.

sprite groups - game, mob...

mob_sprites = pygame.sprite.Group()

create sprite objects, add to sprite groups...

for i in range(10):

 mob = Mob()

 # add to game_sprites group to get object updated

 game_sprites.add(mob)

 # add to mob_sprites group - use for collision detection &c.

 mob_sprites.add(mob)

create our mob objects

then add them to the required sprite groups

by adding them to the game_sprites group

they will be updated as the game loop is executed

mob_sprites group will help us easily detect extra sprite objects

e.g. when we need to add collision detection

or remove them from the game window...

Python and Pygame - Game Example 1

modify motion of extra objects - part 1

above updates work great for random motion along the y-axis

add some variation to movement of extra sprite object by modifying the x-axis

we can modify the x-axis for each extra sprite object

creates variant angular motion along both the x-axis and y-axis, e.g.

random speed along the x-axis

self.speed_x = random.randrange(-3, 3)

...

self.rect.x += self.speed_x

check if sprite leaves the bottom of the game window - then randomise at the top...

if self.rect.top > winHeight + 15 or self.rect.left < -15 or self.rect.right > winWidth + 1

 # specify random start posn & speed of extra sprite objects

 self.rect.x = random.randrange(winWidth - self.rect.width)

 self.speed_x = random.randrange(-3, 3)

...

Python and Pygame - Game Example 1

modify motion of extra objects - part 2

our mob class may now be updated as follows,

added a quick check for motion of our extra sprite object along the x-axis

as sprite exits on either side of the screen

create a new sprite on a random path down the screen

resources

notes = sprites-more-objects.pdf

code = basicsprites4.py

game example

shooter0.2.py

add enemy objects

create a generic extra sprite object for the game - standard name is *mob*

class Mob(pygame.sprite.Sprite):

 def __init__(self):

 pygame.sprite.Sprite.__init__(self)

 self.image = pygame.Surface((20, 20))

 self.image.fill(CYAN)

 # specify bounding rect for sprite

 self.rect = self.image.get_rect()

 # specify random start posn & speed

 self.rect.x = random.randrange(winWidth - self.rect.width)

 self.rect.y = random.randrange(-100, -50)

 # random speed along the x-axis

 self.speed_x = random.randrange(-3, 3)

 # random speed along the y-axis

 self.speed_y = random.randrange(1, 7)

 def update(self):

 self.rect.x += self.speed_x

 self.rect.y += self.speed_y

 # check if sprite leaves the bottom of the game window - then randomise at the top..

 if self.rect.top > winHeight + 15 or self.rect.left < -15 or self.rect.right > winWid

 # specify random start posn & speed of extra sprite objects

 self.rect.x = random.randrange(winWidth - self.rect.width)

 self.rect.y = random.randrange(-100, -50)

 self.speed_x = random.randrange(-3, 3)

 self.speed_y = random.randrange(1, 7)

Video - Shooter 0.2

move & control

Python and Pygame - Game Example 1

add new sprites

create a new class for this sprite object

e.g. projectiles that a player may appear to fire from the top of player object

such as a ship &c

create a generic projectile sprite - for bullets, lasers &c.

class Projectile(pygame.sprite.Sprite):

 # x, y - add specific location for object relative to player sprite

 def __init__(self, x, y):

 pygame.sprite.Sprite.__init__(self)

 self.image = pygame.Surface((5, 10))

 self.image.fill(RED)

 self.rect = self.image.get_rect()

 # weapon fired from front (top) of player sprite...

 self.rect.bottom = y

 self.rect.centerx = x

 # speed of projectile up the screen

 self.speed_y = -10

 def update(self):

 # update y relative to speed of projectile on y-axis

 self.rect.y += self.speed_y

 # remove from game window - if it goes beyond bounding for y-axis at top...

 if self.rect.bottom < 0:

 # kill() removes specified sprite from group...

 self.kill()

creating another sprite object for a projectile such as a bullet or a laser

beam

projectile will be shot from the top of another object

set x and y coordinates relative to position of player's object

setting the speed along the y-axis so it travels up the screen

as we update each projectile object

update its speed, and then check its position on the screen...

if it leaves the top of the game window

we can call the generic kill() method on this sprite

method is available for any sprite object we create in the game window

Python and Pygame - Game Example 1

listen for keypress

need to add a new listener to the game loop to detect a keypress for the

spacebar

use this keypress to allow a player to shoot these projectiles, e.g. a laser

beam

'processing' inputs (events)

for event in EVENTS.get():

 # check keyboard events - keydown

 if event.type == pygame.KEYDOWN:

 # check for ESCAPE key

 if event.key == pygame.K_ESCAPE:

 gameExit()

 elif event.key == pygame.K_SPACE:

 # fire laser beam...

 player.fire()

updated our keypress listeners to check each time a player hits down on

the spacebar

use this keypress event to fire our projectile

e.g. a laser beam to hit our enemy mobs...

Python and Pygame - Game Example 1

release new sprites

as player hits the spacebar, we need to create new sprites

new sprite objects will then be released from the top of the player's object

relative position of one sprite object is determining start position of

another sprite object

need to update the class for our primary sprite object, e.g. a player

include a method for firing the projectiles from the top of this sprite object, e.g.

fire projectile from top of player sprite object

def fire(self):

 # set position of projectile relative to player's object rect for centerx and top

 projectile = Projectile(self.rect.centerx, self.rect.top)

 # add projectile to game sprites group

 game_sprites.add(projectile)

 # add each projectile to sprite group for all projectiles

 projectiles.add(projectile)

sets start position for x and y coordinates of each projectile sprite

sets to the current position of the player's sprite object

then, add each projectile sprite object to the main game sprite group

and add a new sprite group for all of the projectiles

add this new sprite group as follows,

projectiles = pygame.sprite.Group()

when a player presses down on the spacebar a projectile will be fired

a red laser beam from the top of the player's sprite object

resources

notes = sprites-relative-objects.pdf

code = basicsprites5.py

Video - Basic Sprites

relative objects

Python and Pygame - Game Example 1

basic collision detection

Pygame includes support for adding explicit collision detection

between two or more sprites in a game window

use built-in functions to help us work with these collisions

add basic collision detection

each time an object hits the player's object at the foot of the game window

Pygame includes the following function, e.g.

sprite object's function allows us to check if one sprite object has been hit

by another

e.g. checking if player sprite object hit by another sprite object

in this example, from the mob_sprites group

False parameter is a boolean value for the state of the object that has

hit

i.e. determines whether a mob sprite object should be deleted from game window or not

particularly useful as it returns a list data structure

contains any mob sprite objects that hit the player sprite object

update this code as follows, and store this list in a variable, e.g.

collisions = pygame.sprite.spritecollide(player, mob_sprites, False)

then use this list to check if any collisions have occurred in our game

window, e.g.

...

if collisions:

 # update game objects &c.

 ...

...

use boolean value to check if the list collisions is empty or not

add check for collision - extra objects and player sprites (False = hit object is not del

pygame.sprite.spritecollide(player, mob_sprites, False)

Python and Pygame - Game Example 1

Sprite group collision detection

now add collision detection for various groups of sprites

e.g. one group of sprites may be colliding with another, defined sprite group...

use Pygame's collide method for sprite groups, e.g.

boolean parameter values of True and True
allow us to delete both the hit enemy objects

and the projectile objects that hit them

as list of collisions is populated

create new sprite objects for those that have been hit and deleted

e.g. extra objects that move down the game window

add more mobs for those hit and deleted by projectiles

for collision in collisions:

 mob = Mob()

 game_sprites.add(mob)

 mob_sprites.add(mob)

if we don't create new extra objects

game window will quickly run out of sprite objects

resources

notes = sprites-collision-detection.pdf

code = basicsprites6.py

game example

shooter0.3.py

collision detection of single sprite

detect group collisions

add check for sprite group collide with another sprite group - projectiles hitting enemy

collisions = pygame.sprite.groupcollide(mob_sprites, projectiles, True, True)

Video - Shooter 0.3

basic collisions and firing

Python and Pygame - Game Example 1

add graphics to the sprites

now start to add some custom images for our sprite objects

player object, mobs, projectiles, and a game background...

add images and backgrounds to our shooter game to help represent

objects

player's ship, laser beams firing, asteroids to hit, and star-filled background

before we can add our images for the sprites and backgrounds

need to add some images files to our game's directory structure

normally create an assets folder

add any required images, audio, video &c. for our game...

may now update our directory structure to include the required assets,

|-- shootemup

 |-- assets

 |-- images

 |__ ship.png

Video - Add Graphics

add images to the game

Python and Pygame - Game Example 1

import game assets

need to import the Python module for os

allows us to query a local OS's directory structure.

import os

import os

specify the directory location of the main game file

so Python can keep track of the relative location of this file, e.g.

game_dir = os.path.dirname(__file__)

__file__ is used by Python to abstract the root application file

then portable from system to system

allows us to set relative paths for game directories, e.g.

game assets

game_dir = os.path.dirname(__file__)

relative path to assets dir

assets_dir = os.path.join(game_dir, "assets")

relative path to image dir

img_dir = os.path.join(assets_dir, "images")

may then import an image for use as a sprite as follows,

assets - images

ship = pygame.image.load(os.path.join(img_dir, "ship.png"))

Python and Pygame - Game Example 1

convert and colour key

as we import an image for use as a sprite within our game

need to use a convert() method

ensures image file is of a type Pygame can use natively

if not, there is a potential for the game to perform more slowly

convert example,

ship = pygame.image.load(os.path.join(img_dir, "ship.png")).convert()

for each image that Pygame adds as a sprite

a bounding rectangle will be set with a given colour

in most examples, we want to set the background of our sprite to

transparent

rectangle for the image will now blend with the background colour of our

game window, e.g.

ball.set_colorkey(WHITE)

now check for white coloured pixels in the image background

then set them to transparent

Python and Pygame - Game Example 1

add game background

now add a background image for our game

we might recreate stars and space for our game window, e.g.

load graphics

bg_img = pygame.image.load(os.path.join(img_dir, "bg-purple.png")).convert

also add a rectangle to contain our background image

add rect for bg - helps locate background

bg_rect = bg_img.get_rect()

basically helps us know where to add our background image

then subsequently find it as needed with the logic of our game

then draw our background image as part of the game loop, e.g.

draw background image - specify image file and rect to load image

window.blit(bg_img, bg_rect)

Python and Pygame - Game Example 1

add game images

need to add an image for our player's ship, laser beams, and asteroids to

shoot, e.g.

add ship image

ship_img = pygame.image.load(os.path.join(img_dir, "ship-blue.png")).convert()

ship's laser

laser_img = pygame.image.load(os.path.join(img_dir, "laser-blue.png")).convert()

asteroid

asteroid_img = pygame.image.load(os.path.join(img_dir, "asteroid-med-grey.png")).convert()

to use these new images in our game

need to modify the code for each object, e.g. Player object

update our class to include a reference to the ship_img

self.image = ship_img

also customise this image by scaling it to better fit our game window, e.g.

load ship image & scale to fit game window...

self.image = pygame.transform.scale(ship_img, (49, 37))

set colorkey to remove black background for ship's rect

self.image.set_colorkey(BLACK)

also update our ship's rect using a colorkey
ensures black rect is not visible in the game window

resources

notes = graphics-and-sprites.pdf

code = graphicssprites1.py

game example

shooter0.4.py

add graphics for sprites
images for player's ship, ship's laser, and asteroids &c.
set colorkey for rect of sprite's
set background image for game window...

Video - Shooter 0.4

add graphics for sprites

Game Dev resources

music, sound effects...

for a game's sound effects

many different options and sources for these sounds

try open source examples, e.g.

Open Game Art

perhaps create our own custom sounds using a utility such as SFXR, e.g.

SFXR

or its derivative website option, e.g.

BFXR

https://opengameart.org/
http://www.drpetter.se/project_sfxr.html
http://www.bfxr.net/

Games and formal elements

intro

as with each formal structure

players

objectives

procedures & rules
including implied boundaries

conflict, challenge, battle...

outcome, end result...

these constituent elements come together

to form what we largely understand to be a game

such formal elements constitute how we

design

structure

develop our video games

overlap and interplay of these formal elements

has now become the foundation for game design

a sound understanding and knowledge of these formal elements

their usage and application

helps us start creating innovative, playful game experiences

Games and formal elements

players and games - part 1

identified the need for rules, procedures...

within the confines of such rules

players are suspending normal societal restrictions

players enact shooting, fighting, role-play, and magical roles...

roles, actions &c. normally confined to a passive medium, e.g. books, film...

such actions can often form stark contrasts in a game environment

rules become enacted in a magic circle

originally described by Huizinga in his 1938 title, Homo Ludens

later adapted, and refashioned for digital games

In a very basic sense, the magic circle of a game is where the game

takes place. To play a game means entering into a magic circle, or

perhaps creating one as a game begins.

Salen, K. & Zimmerman, E. Rules of Play: Game Design

Fundamentals. MIT Press. 2003.

Games and formal elements

players and games - part 2

such rules naturally create the opportunity for play

within the defined confines of a game

our use of rules, characters, story, and even mechanics and control

invites a player to become involved with, and invested in, our game

motion controllers became an invitation for players to intuitively enter a

game

e.g. Nintendo's Wii, Microsoft's Xbox Kinect, and Sony's Playstation Move...

the premise of many games now became an extension of the controller

it's not only a matter of engaging and inviting players into your game

need to consider the nature and structure of player participation, e.g.

how many players does the game support?

will each player adopt the same role?

perhaps play in a team or in direct competition

how we answer such questions will have a direct influence

on the nature of the game we're designing

its gameplay

and a player's engagement with the story and characters...

Image - Motion Controllers

Nintendo Wii Xbox Kinect
Playstation

Move

Video - Xbox Kinect & Algorithms

Kinect algorithm starts at 47:36 minutes into the

video.

Source - Algorithms, YouTube

Algoritmos BBCAlgoritmos BBCAlgoritmos BBC

https://www.youtube.com/watch?v=Q9HjeFD62Uk&index=2&list=PLEYdfD3Pd0Xovamy5A5OR3y8uZqtehkH3
https://www.youtube.com/watch?v=Q9HjeFD62Uk
https://www.youtube.com/channel/UC8FusGS_pCUE2EUN-9pQaFQ

Python and Pygame - Game Example 1

better collison detection

collision detection is currently using rectangles to detect one sprite

colliding with another

technically referred to as Axis-aligned Bounding Box (AABB)

for some sprite images this will often cause an unrealistic effect as the two

images collide

image does not appear to collide with the other image

due to space caused by each respective rectangle

as one corner of a rectangle hits another corner a collision will be

detected, e.g.

 | |

 | |

 | _|_____

 |______|_| |

 | |

 |_______|

unless each sprites image fits exactly inside the respective bounding box

there will be space left over...

a few options for rectifying this issue

might choose to simply calculate and set a slightly smaller rectangle

or, use a circular bounding box for our sprite image

benefit of an axis-aligned bounding box

game is able to detect and calculate collisions much faster for a rectangle bounding box

a circular bounding box may be slower

simply due to the number of calculations the game may need to perform

checks radius of one bounding box against another bounding box radius

rarely becomes a practical issue

unless you're trying to work with thousands of potential sprite images

another option, the most precise as well

use pixel perfect collision detection (PPCD)

PPCD - game engine will check each pixel of each possible sprite image

determines if and when they collided

particularly resource intensive unless you require such precision

Python and Pygame - Game Example 1

add circle bounding box - part 1

add some circle bounding boxes to our sprite images

for player and mob objects

start by adding explicit circles with a fill colour

helps us check the relative position of the circle's bounding box, e.g.

self.radius = 20

pygame.draw.circle(self.image, RED, self.rect.center, self.radius)

we know sprite image for player's object will have a fixed, known size

we may set the radius to 20

we may add some circle bounding boxes to the mob objects as well, e.g.

self.radius = int(self.rect.width * 0.9 / 2)

pygame.draw.circle(self.image, RED, self.rect.center, self.radius)

Python and Pygame - Game Example 1

add circle bounding box - part 2

used same basic pattern to add circles

for mob objects we may set each circle's radius relative to the sprite image

setting radius as 90% of width of sprite image

then returning half of that value...

to use each circle bounding box, we need to update the collision checks as

well

update this check for each mob object in the update section of the game loop, e.g.

updated the collision check to explicitly look for circle collisions

now remove explicit drawn circle for each circle bounding box

e.g. for the player and mob object sprites

we may simply comment out the drawn circle

self.radius = int(self.rect.width * 0.9 / 2)

#pygame.draw.circle(self.image, RED, self.rect.center, self.radius)

resources

notes = sprites-collision-detection-better.pdf

code = collisionsprites3.py

game example

shooter0.5.py

better collisions and detection
change bounding box for player and mob sprite objects
change bounding box to circle, and modify radius to fit sprite objects

add check for collision - enemy and player sprites (False = hit object is not deleted fro

collisions = pygame.sprite.spritecollide(player, mob_sprites, False, pygame.sprite.collide_

Video - Shooter 0.5

better collision detection - example 1

Video - Shooter 0.5

better collision detection - example 2

Games and formal elements

players, patterns, and numbers

games may be designed and developed for a variety of player numbers

from strict single player options to varied multiplayer environments

MMOG push player numbers to the upper bounds

player numbers will often determine patterns of interaction for your game

patterns may include

single player versus the game
e.g. Space Invaders, Mario, Sonic...

multiple individual players versus the game
e.g. sports, racing, card games...

single player versus another player
e.g. games such as Street Fighter and Mortal Kombat...

multiple players versus a single player
many detective and role playing board games include such features
some god games may also be structured using this pattern

collaborative play
players work together against the game
sports games, Journey by designer Jenova Chen...

multiple players competing
e.g. Halo, Call of Duty...
standard pattern referenced for multiplayer games

team competitions...
e.g. eSports such as League of Legends...

Games and Dynamics

systems and evolution - intro

a game's players, their type, number, reactions, behaviours &c.

may also be a reflection of the game system itself

systems may often display complex and unpredictable results

e.g. when set in motion as part of the broader, general gameplay

such systems are not inherently predicated on complexity and scope

good examples of simple rule sets and patterns

produce unpredictable results as they are set in motion

we may see such patterns on a regular basis, e.g. in the natural world

complex systems emerging due to collaboratrive structures, e.g.

ant colony

bee hive and pollen collection

swarm intelligence of a confusion of wildebeest

human consciousness may be the product of such systems

commonly referred to as emergent systems

well-known experiment in emergence was conducted by John Conway in

the 1960s

particularly useful and interesting for us as game designers and developers

Conway was particularly curious about the working systems of

rudimentary elements

how did such elements work together based upon a set of defined, simple rules...

he wanted to clearly demonstrate this phenomenon at its simplest level

e.g. in a defined 2D space, such as a known chess board

he tested various ideas and concepts

considered ideas such as on and off logic for squares/cells on a board

logic based on rules for adjacent squares/cells

he continued his experiments and tests

in a similar manner to a game designer

toyed with various sets of rules for several years

Games and Dynamics

systems and evolution - simple rules

rules

Birth

if a cell is unpopulated, and surrounded by exactly 3 populated cells, this cell will be
populated in the next generation

Death by loneliness

if a cell is populated, and surrounded by fewer than 2 populated cells, this cell will be
unpopulated in the next generation

Death by overpopulation

if a cell is populated, and surrounded by at least 4 populated cells, this cell will be
unpopulated in the next generation

emergent system finally converged on the above set of rules

Conway, and some of his colleagues at Cambridge, began populating their

chess board with pieces

then tested their rules by hand

started to learn about this system

and the very nature of emergent, almost evolving systems

quickly realised that different starting conditions had a noticeable impact

on a system's evolution

realised that the complexity of such start conditions might have a side-

effect on the patterns created

many simply failing to survive and evolve

a particularly interesting discovery became known as the R Pentomino

configuration

Richard Guy, an associate of Conway, became fascinated with this particular
configuration

Guy tested their defined rules for more than a hundred generations

started to observe various patterns emerging

a regular mix of shapes and patterns emerging

Guy noticed that his shapes appeared to moving, effectively walking across the board

he exclaimed at this discovery,

Look, my bit's walking

Poundstone, W. Prisoner's Dilemma. Touchstone. New York. 2002.

Guy continued to test and work on this configuration

until he was able to get this pattern to actually walk across the room

and then out the door...

Guy's discovery became known simply as a glider

Image - Systems and Evolution

R-Pentomino

R Pentomino

Image - Systems and Evolution

glider evolution

interactive demo - glider

http://conwaylife.com/wiki/Glider

Games and Dynamics

systems and evolution - examples

such simple emergent systems demonstrated

benefits and application of simplicity in rules and patterns

their ability to evolve into life-form style patterns

such systems had the potential to evolve and develop with each generation

particularly interesting and useful to us as game designers

may start to add such techniques to help make our games

more realistic, evolving, and unpredictable for our players...

example games using these techniques include:

Black and White

Grand Theft Auto (v3 onwards)

Halo

Oddworld: Munch's Oddysee

The Sims

...

Games and development

quick exercise

A quick exercise to consider evolution in systems,

Traveling Salesman Problem

evolution of simple systems

swarm/hive intelligence

interaction in systems

Then,

consider the above, and how they might interact in a system to evolve an

optimal solution to a problem

consider application of such simple systems and evolution in a game

environment

Video - Algorithms and Evolution

Algorithms and evolution starts at 31:20 minutes into

the video.

Source - Algorithms, YouTube

Algoritmos BBCAlgoritmos BBCAlgoritmos BBC

https://www.youtube.com/watch?v=Q9HjeFD62Uk&index=2&list=PLEYdfD3Pd0Xovamy5A5OR3y8uZqtehkH3
https://www.youtube.com/watch?v=Q9HjeFD62Uk
https://www.youtube.com/channel/UC8FusGS_pCUE2EUN-9pQaFQ

Demos

pygame collision detection - basic

collisionsprites1.py

collisionsprites2.py

pygame collision detection - better

collisionsprites3.py

pygame sprites

basicsprites4.py

basicsprites5.py

basicsprites6.py

graphicssprites1.py

pygame - Game 1 Example

shooter0.1.py

shooter0.2.py

shooter0.3.py

shooter0.4.py

shooter0.5.py

Game notes

Pygame

sprites-more-objects.pdf

sprites-relative-objects.pdf

sprites-collision-detection.pdf

graphics-and-sprites.pdf

sprites-collision-detection-better.pdf

Resources

Huizinga, J. Homo Ludens: A Study of the Play-Element in Culture. Angelico

Press. 2016.

Poundstone, W. Prisoner's Dilemma. Touchstone. New York. 2002.

Salen, K. & Zimmerman, E. Rules of Play: Game Design Fundamentals. MIT

Press. 2003.

Conway and Life Patterns

LifeWiki

Richard Guy

Glider

Various

BFXR

Homo Ludens

Open Game Art

SFXR

http://conwaylife.com/wiki/Main_Page
http://conwaylife.com/wiki/Richard_Guy
http://conwaylife.com/wiki/Glider
http://www.bfxr.net/
https://en.wikipedia.org/wiki/Homo_Ludens
https://opengameart.org/
http://www.drpetter.se/project_sfxr.html

Videos

Algorithms - YouTube

https://www.youtube.com/watch?v=Q9HjeFD62Uk&index=2&list=PLEYdfD3Pd0Xovamy5A5OR3y8uZqtehkH3

