Comp 388/488 - Game Design and Development

Spring Semester 2019 - Week 7

Dr Nick Hayward

Python and Pygame - Game Example |

shooter style game - STG

= start creating our first full game example
 shooter example - STG in Japan

= this game will help us design, develop, and test the following:
e user control
* enemy objects
 collision detection
e firing projectiles at enemies
 destroying enemy objects
e add custom sprites and graphics
e improve the collision detection
e start animating sprite images
» radomise enemy objects to create greater challenges
e keep a running game score and render to game window
e add game music and sound effects
 check our player's health...

e add some fun game extras
o e.g. health status, explosions...
o lots more...

Python and Pygame - Game Example |

add more objects - mob

= now start to add extra sprite objects to our game window
e commonly given a collective, generic name of mob

= add the following class Mob to our game

create a generic mob sprite for the game - standard name is *mob*
class Mob(pygame.sprite.Sprite):
def __init__ (self):
pygame.sprite.Sprite.__init__ (self)
self.image = pygame.Surface((20, 20))
self.image.fill (CYAN)
specify bounding rect for sprite
self.rect = self.image.get_rect()
specify random start posn & speed of enemies
self.rect.x = random.randrange (winWidth - self.rect.width)
self.rect.y = random.randrange(-100, -50)

self.speed_y = random.randrange(l, 10)

def update(self):
self.rect.y += self.speed_y

= with this class we can create extra sprite objects
e set their size, colour, &c.
» then set random x and y coordinates for the starting position of the sprite object

= use random values to ensure that the objects start and move from
different positions
* from the top of the game window

 then progress in staggered groups down the window...

Python and Pygame - Game Example |

update extra objects

= as our enemy objects move down the game window
* need to check if and when they leave the bottom of the game window

= we can add the following checks to the update function

def update(self):
self.rect.y += self.speed_y
check if enemy sprite leaves the bottom of the game window - then randomise at ¢t
if self.rect.top > winHeight + 15:
specify random start posn & speed of enemies
self.rect.x = random.randrange (winWidth - self.rect.width)
self.rect.y = random.randrange(-100, -50)

self.speed_y = random.randrange(l, 7)

= as each sprite object leaves the bottom of the game window
e we can check its position

= then, we may reset the sprite object to the top of the game window

= need to ensure that the same sprite object does not simply loop around
 and then reappear at the same position at the top of the game window

» becomes too easy and tedious for our player...

= instead, we can reset our mob object to a random path down the window
e should make it slightly harder for our player

= also ensure that each extra sprite object has a different speed
» by simply randomising the speed along the y-axis per sprite object

Python and Pygame - Game Example |
show extra objects

= now create a mob group as a container for our extra sprite objects

= group will become particularly useful as we add collision detection later in
the game

 update our code as follows, e.g.

sprite groups - game, mob...
mob_sprites = pygame.sprite.Group()
create sprite objects, add to sprite groups...
for i in range(10):
mob = Mob ()

add to game_sprites group to get object updated
game_sprites.add(mob)

add to mob_sprites group - use for collision detection &c.
mob_sprites.add(mob)

= create our mob objects

o then add them to the required sprite groups

= by adding them to the game_ sprites group
* they will be updated as the game loop is executed

= mob_ sprites group will help us easily detect extra sprite objects
» e.g. when we need to add collision detection

e or remove them from the game window...

Python and Pygame - Game Example |

modify motion of extra objects - part |

= above updates work great for random motion along the y-axis
e add some variation to movement of extra sprite object by modifying the x-axis

= we can modify the x-axis for each extra sprite object
e creates variant angular motion along both the x-axis and y-axis, e.g.

random speed along the x-axis

self.speed_x = random.randrange(-3, 3)

self.rect.x += self.speed_x
check if sprite leaves the bottom of the game window - then randomise at the top...

if self.rect.top > winHeight + 15 or self.rect.left < -15 or self.rect.right > winWidth +
specify random start posn & speed of extra sprite objects
self.rect.x = random.randrange(winWidth - self.rect.width)

self.speed_x = random.randrange(-3, 3)

Python and Pygame - Game Example |

modify motion of extra objects - part 2

= our mob class may now be updated as follows,

create a generic extra sprite object for the game - standard name is *mob*

class Mob(pygame.sprite.Sprite):
def __init__ (self):

pygame.sprite.Sprite.__init__ (self)
self.image = pygame.Surface((20, 20))
self.image.fill (CYAN)
specify bounding rect for sprite
self.rect = self.image.get_rect()
specify random start posn & speed
self.rect.x = random.randrange(winWidth - self.rect.width)
self.rect.y = random.randrange(-100, -50)
random speed along the x-axis
self.speed_x = random.randrange(-3, 3)
random speed along the y-axis

self.speed_y = random.randrange(l, 7)

def update(self):
self.rect.x += self.speed_x
self.rect.y += self.speed_y

check if sprite leaves the bottom of the game window - then randomise at the top..

if self.rect.top > winHeight + 15 or self.rect.left < -15 or self.rect.right > winWi(

specify random start posn & speed of extra sprite objects
self.rect.x = random.randrange (winWidth - self.rect.width)

self.rect.y = random.randrange(-100, -50)

self.speed_x random.randrange (-3, 3)

self.speed_y = random.randrange(l, 7)

= added a quick check for motion of our extra sprite object along the x-axis

e as sprite exits on either side of the screen

e create a new sprite on a random path down the screen
resources
= notes = sprites-more-objects.pdf
= code = basicsprites4.py

game example

= shooter0.2.py

* add enemy objects

Video - Shooter 0.2

move & control

Python and Pygame - Game Example |

add new sprites

= create a new class for this sprite object
» e.g. projectiles that a player may appear to fire from the top of player object
 such as a ship &c

create a generic projectile sprite - for bullets, lasers &c.
class Projectile(pygame.sprite.Sprite):
x, y - add specific location for object relative to player sprite
def __init__ (self, x, y):
pygame.sprite.Sprite.__init__ (self)
self.image = pygame.Surface((5, 10))
self.image.fill (RED)
self.rect = self.image.get_rect()
weapon fired from front (top) of player sprite...
self.rect.bottom = y
self.rect.centerx = x
speed of projectile up the screen
self.speed_y = -10

def update(self):
update y relative to speed of projectile on y-axis
self.rect.y += self.speed_y
remove from game window - if it goes beyond bounding for y-axis at top...
if self.rect.bottom < 0:
kill() removes specified sprite from group...
self.kill()

= creating another sprite object for a projectile such as a bullet or a laser
beam

= projectile will be shot from the top of another object
» set x and y coordinates relative to position of player's object

 setting the speed along the y-axis so it travels up the screen

= as we update each projectile object
e update its speed, and then check its position on the screen...

= if it leaves the top of the game window
e we can call the generic ki11 () method on this sprite

= method is available for any sprite object we create in the game window

Python and Pygame - Game Example |

listen for keypress

= need to add a new listener to the game loop to detect a keypress for the
spacebar

= use this keypress to allow a player to shoot these projectiles, e.g. a laser
beam

'processing’' inputs (events)
for event in EVENTS.get():
check keyboard events - keydown
if event.type == pygame.KEYDOWN:
check for ESCAPE key
if event.key == pygame.K_ESCAPE:
gameExit ()
elif event.key == pygame.K_SPACE:
fire laser beam...

player.fire()

= updated our keypress listeners to check each time a player hits down on
the spacebar

= use this keypress event to fire our projectile
e e.g. alaser beam to hit our enemy mobs...

Python and Pygame - Game Example |

release new sprites

= as player hits the spacebar, we need to create new sprites
= new sprite objects will then be released from the top of the player's object

= relative position of one sprite object is determining start position of
another sprite object

= need to update the class for our primary sprite object, e.g. a player
* include a method for firing the projectiles from the top of this sprite object, e.g.

fire projectile from top of player sprite object

def fire(self):
set position of projectile relative to player's object rect for centerx and top

projectile = Projectile(self.rect.centerx, self.rect.top)
add projectile to game sprites group
game_sprites.add(projectile)
add each projectile to sprite group for all projectiles
projectiles.add(projectile)
= sets start position for x and y coordinates of each projectile sprite

* sets to the current position of the player's sprite object

= then, add each projectile sprite object to the main game sprite group
* and add a new sprite group for all of the projectiles

 add this new sprite group as follows,

projectiles = pygame.sprite.Group()

= when a player presses down on the spacebar a projectile will be fired
 a red laser beam from the top of the player's sprite object

resources

= notes = sprites-relative-objects.pdf

= code = basicsprites5.py

Video - Basic Sprites

relative objects

Python and Pygame - Game Example |

basic collision detection

= Pygame includes support for adding explicit collision detection
e between two or more sprites in a game window

e use built-in functions to help us work with these collisions

= add basic collision detection
» each time an object hits the player's object at the foot of the game window

e Pygame includes the following function, e.g.

add check for collision - extra objects and player sprites (False = hit object is not de

pygame.sprite.spritecollide(player, mob_sprites, False)

= sprite object's function allows us to check if one sprite object has been hit
by another

= e.g. checking if player sprite object hit by another sprite object
* in this example, from the mob sprites group

= False parameter is a boolean value for the state of the object that has
hit
 i.e. determines whether a mob sprite object should be deleted from game window or not
= particularly useful as it returns a list data structure

 contains any mob sprite objects that hit the player sprite object

 update this code as follows, and store this list in a variable, e.g.

collisions = pygame.sprite.spritecollide(player, mob_sprites, False)

= then use this list to check if any collisions have occurred in our game
window, e.g.

if collisions:

update game objects &c.

= use boolean value to check if the list collisions is empty or not

Python and Pygame - Game Example |

Sprite group collision detection

= now add collision detection for various groups of sprites
* e.g. one group of sprites may be colliding with another, defined sprite group...

= use Pygame's collide method for sprite groups, e.g.

add check for sprite group collide with another sprite group - projectiles hitting enemy

collisions = pygame.sprite.groupcollide(mob_sprites, projectiles, True, True)

= boolean parameter values of True and True
 allow us to delete both the hit enemy objects
» and the projectile objects that hit them

= as list of collisions is populated

= create new sprite objects for those that have been hit and deleted

= e.g. extra objects that move down the game window

add more mobs for those hit and deleted by projectiles
for collision in collisions:

mob = Mob ()

game_sprites.add(mob)

mob_sprites.add(mob)

= if we don't create new extra objects
e game window will quickly run out of sprite objects

resources

= notes = sprites-collision-detection.pdf
= code = basicspritesé.py

game example
= shooter0.3.py

 collision detection of single sprite

» detect group collisions

Video - Shooter 0.3

basic collisions and firing

Python and Pygame - Game Example |

add graphics to the sprites

= now start to add some custom images for our sprite objects
» player object, mobs, projectiles, and a game background...

= add images and backgrounds to our shooter game to help represent
objects
o player's ship, laser beams firing, asteroids to hit, and star-filled background

= before we can add our images for the sprites and backgrounds
» need to add some images files to our game's directory structure
e normally create an assets folder

* add any required images, audio, video &c. for our game...

= may now update our directory structure to include the required assets,

| -- shootemup
|-- assets
| -- images

| _ ship.png

Video - Add Graphics

add images to the game

Python and Pygame - Game Example |

import game assets

= need to import the Python module for os

= allows us to query a local OS's directory structure.

import os

import os

= specify the directory location of the main game file
5o Python can keep track of the relative location of this file, e.g.

game_dir = os.path.dirname(__ file_)

= file s used by Python to abstract the root application file
* then portable from system to system
 allows us to set relative paths for game directories, e.g.

game assets

game_dir = os.path.dirname(__file_)

relative path to assets dir

assets_dir = os.path.join(game_dir, "assets")
relative path to image dir

img _dir = os.path.join(assets_dir, "images")
= may then import an image for use as a sprite as follows,

assets - images

ship = pygame.image.load(os.path.join(img_dir, "ship.png"))

Python and Pygame - Game Example |

convert and colour key

= as we import an image for use as a sprite within our game
e need to use a convert () method

* ensures image file is of a type Pygame can use natively

= if not, there is a potential for the game to perform more slowly

= convert example,
ship = pygame.image.load(os.path.join(img_dir, "ship.png")).convert()

= for each image that Pygame adds as a sprite
e a bounding rectangle will be set with a given colour

= in most examples, we want to set the background of our sprite to
transparent

= rectangle for the image will now blend with the background colour of our
game window, e.g.

ball.set_colorkey (WHITE)

= now check for white coloured pixels in the image background
 then set them to transparent

Python and Pygame - Game Example |

add game background

= now add a background image for our game

* we might recreate stars and space for our game window, e.g.

load graphics
bg_img = pygame.image.load(os.path.join(img_dir, "bg-purple.png”)).convert

= also add a rectangle to contain our background image

add rect for bg - helps locate background

bg_rect = bg_img.get_rect()

= basically helps us know where to add our background image
 then subsequently find it as needed with the logic of our game

e then draw our background image as part of the game loop, e.g.

draw background image - specify image file and rect to load image

window.blit (bg_img, bg_rect)

Python and Pygame - Game Example |

add game images

= need to add an image for our player's ship, laser beams, and asteroids to
shoot, e.g.

add ship image
ship_img = pygame.image.load(os.path.join(img_dir, "ship-blue.png")).convert()

ship's laser
laser_img = pygame.image.load(os.path.join(img_dir, "laser-blue.png")).convert()

asteroid
asteroid_img = pygame.image.load(os.path.join(img_dir, "asteroid-med-grey.png")).convert()

= to use these new images in our game
» need to modify the code for each object, e.g. P1ayer object
 update our class to include a reference to the ship img

self.image = ship_img

= also customise this image by scaling it to better fit our game window, e.g.

load ship image & scale to fit game window. ..
self.image = pygame.transform.scale(ship_img, (49, 37))
set colorkey to remove black background for ship's rect

self.image.set_colorkey (BLACK)

= also update our ship's rect using a colorkey
e ensures black rect is not visible in the game window

resources
= notes = graphics-and-sprites.pdf
= code = graphicssprites|.py
game example

= shooter0.4.py
 add graphics for sprites
o images for player's ship, ship's laser, and asteroids &c.

o set colorkey for rect of sprite's
o set background image for game window...

Video - Shooter 0.4

add graphics for sprites

Game Dev resources

music, sound effects...

= for a game's sound effects
* many different options and sources for these sounds

= try open source examples, e.g.
e Open Game Art

= perhaps create our own custom sounds using a utility such as SFXR, e.g.
o SFXR

= or its derivative website option, e.g.
* BFXR

https://opengameart.org/
http://www.drpetter.se/project_sfxr.html
http://www.bfxr.net/

Games and formal elements

intro

= as with each formal structure
e players
* objectives

* procedures & rules
o including implied boundaries

 conflict, challenge, battle...

e outcome, end result...

= these constituent elements come together
» to form what we largely understand to be a game

= such formal elements constitute how we
» design
e structure

» develop our video games

= overlap and interplay of these formal elements
e has now become the foundation for game design

= a sound understanding and knowledge of these formal elements
e their usage and application

 helps us start creating innovative, playful game experiences

Games and formal elements

players and games - part |

= identified the need for rules, procedures...

= within the confines of such rules
 players are suspending normal societal restrictions
 players enact shooting, fighting, role-play, and magical roles...

* roles, actions &c. normally confined to a passive medium, e.g. books, film...

= such actions can often form stark contrasts in a game environment

= rules become enacted in a magic circle
* originally described by Huizinga in his 1938 title, Homo Ludens

* |ater adapted, and refashioned for digital games

In a very basic sense, the magic circle of a game is where the game
takes place. To play a game means entering into a magic circle, or
perhaps creating one as a game begins.

Salen, K. & Zimmerman, E. Rules of Play: Game Design
Fundamentals. MIT Press. 2003.

Games and formal elements

players and games - part 2

= such rules naturally create the opportunity for play
 within the defined confines of a game

= our use of rules, characters, story, and even mechanics and control

* invites a player to become involved with, and invested in, our game

= motion controllers became an invitation for players to intuitively enter a
game
» e.g. Nintendo's Wii, Microsoft's Xbox Kinect, and Sony's Playstation Move...

= the premise of many games now became an extension of the controller
= it's not only a matter of engaging and inviting players into your game

= need to consider the nature and structure of player participation, e.g.
» how many players does the game support?
 will each player adopt the same role?

e perhaps play in a team or in direct competition

= how we answer such questions will have a direct influence
* on the nature of the game we're designing
* jts gameplay

 and a player's engagement with the story and characters...

Image - Motion Controllers

Playstation

Nintendo Wii Xbox Kinect
Move

P4 ———————————

/ N . k) XBOX 360
2 =
\ s T

Video - Xbox Kinect & Algorithms

Algoritmos BBC

Kinect algorithm starts at 47:36 minutes into the
video.

Source - Algorithms, YouTube

https://www.youtube.com/watch?v=Q9HjeFD62Uk&index=2&list=PLEYdfD3Pd0Xovamy5A5OR3y8uZqtehkH3
https://www.youtube.com/watch?v=Q9HjeFD62Uk
https://www.youtube.com/channel/UC8FusGS_pCUE2EUN-9pQaFQ

Python and Pygame - Game Example |

better collison detection

= collision detection is currently using rectangles to detect one sprite
colliding with another
e technically referred to as Axis-aligned Bounding Box (AABB)

= for some sprite images this will often cause an unrealistic effect as the two
images collide
e image does not appear to collide with the other image

» due to space caused by each respective rectangle

= as one corner of a rectangle hits another corner a collision will be
detected, e.g.

= unless each sprites image fits exactly inside the respective bounding box
o there will be space left over...

= a few options for rectifying this issue
* might choose to simply calculate and set a slightly smaller rectangle

e or, use a circular bounding box for our sprite image

= benefit of an axis-aligned bounding box
e game is able to detect and calculate collisions much faster for a rectangle bounding box

= a circular bounding box may be slower
 simply due to the number of calculations the game may need to perform

» checks radius of one bounding box against another bounding box radius

= rarely becomes a practical issue
* unless you're trying to work with thousands of potential sprite images

= another option, the most precise as well
* use pixel perfect collision detection (PPCD)

= PPCD - game engine will check each pixel of each possible sprite image
e determines if and when they collided

 particularly resource intensive unless you require such precision

Python and Pygame - Game Example |

add circle bounding box - part |
= add some circle bounding boxes to our sprite images
e for player and mob objects

= start by adding explicit circles with a fill colour
* helps us check the relative position of the circle's bounding box, e.g.

self.radius = 20

pygame.draw.circle(self.image, RED, self.rect.center, self.radius)

= we know sprite image for player's object will have a fixed, known size
e we may set the radius to 20

= we may add some circle bounding boxes to the mob objects as well, e.g.

self.radius = int(self.rect.width * 0.9 / 2)
pygame.draw.circle(self.image, RED, self.rect.center, self.radius)

Python and Pygame - Game Example |

add circle bounding box - part 2

= used same basic pattern to add circles
» for mob objects we may set each circle's radius relative to the sprite image
e setting radius as 90% of width of sprite image

e then returning half of that value...

= to use each circle bounding box, we need to update the collision checks as
well
 update this check for each mob object in the update section of the game loop, e.g.

add check for collision - enemy and player sprites (False = hit object is not deleted fr

collisions = pygame.sprite.spritecollide(player, mob_sprites, False, pygame.sprite.collide

= updated the collision check to explicitly look for circle collisions
e now remove explicit drawn circle for each circle bounding box
» e.g. for the player and mob object sprites

* we may simply comment out the drawn circle

self.radius = int(self.rect.width * 0.9 / 2)

#pygame.draw.circle(self.image, RED, self.rect.center, self.radius)

resources

= notes = sprites-collision-detection-better.pdf
= code = collisionsprites3.py
game example

= shooter0.5.py

 better collisions and detection
o change bounding box for player and mob sprite objects
o change bounding box to circle, and modify radius to fit sprite objects

Video - Shooter 0.5

better collision detection - example |

Video - Shooter 0.5

better collision detection - example 2

Games and formal elements

players, patterns, and numbers

= games may be designed and developed for a variety of player numbers
 from strict single player options to varied multiplayer environments
e MMOG push player numbers to the upper bounds

= player numbers will often determine patterns of interaction for your game

= patterns may include

e single player versus the game
o e.g. Space Invaders, Mario, Sonic...

e multiple individual players versus the game
o e.g. sports, racing, card games...

e single player versus another player
o e.g. games such as Street Fighter and Mortal Kombat...

e multiple players versus a single player
o many detective and role playing board games include such features
o some god games may also be structured using this pattern

 collaborative play
o players work together against the game
o sports games, Journey by designer Jenova Chen...

e multiple players competing
o e.g. Halo, Call of Duty...
o standard pattern referenced for multiplayer games

e team competitions...
o e.g. eSports such as League of Legends...

Games and Dynamics

systems and evolution - intro

= a game's players, their type, number, reactions, behaviours &c.
e may also be a reflection of the game system itself

= systems may often display complex and unpredictable results
e e.g. when set in motion as part of the broader, general gameplay

= such systems are not inherently predicated on complexity and scope

= good examples of simple rule sets and patterns
» produce unpredictable results as they are set in motion

= we may see such patterns on a regular basis, e.g. in the natural world
» complex systems emerging due to collaboratrive structures, e.g.
e ant colony
» bee hive and pollen collection

» swarm intelligence of a confusion of wildebeest

= human consciousness may be the product of such systems

e commonly referred to as emergent systems

= well-known experiment in emergence was conducted by John Conway in
the 1960s

 particularly useful and interesting for us as game designers and developers

= Conway was particularly curious about the working systems of
rudimentary elements
» how did such elements work together based upon a set of defined, simple rules...

= he wanted to clearly demonstrate this phenomenon at its simplest level
* e.g. in a defined 2D space, such as a known chess board

= he tested various ideas and concepts
» considered ideas such as on and off logic for squares/cells on a board

* logic based on rules for adjacent squares/cells

= he continued his experiments and tests
* in a similar manner to a game designer

* toyed with various sets of rules for several years

Games and Dynamics

systems and evolution - simple rules

rules

= Birth
 if a cell is unpopulated, and surrounded by exactly 3 populated cells, this cell will be
populated in the next generation

= Death by loneliness

 if a cell is populated, and surrounded by fewer than 2 populated cells, this cell will be
unpopulated in the next generation

= Death by overpopulation

 if a cell is populated, and surrounded by at least 4 populated cells, this cell will be
unpopulated in the next generation

= emergent system finally converged on the above set of rules

= Conway, and some of his colleagues at Cambridge, began populating their
chess board with pieces
e then tested their rules by hand

= started to learn about this system

 and the very nature of emergent, almost evolving systems

= quickly realised that different starting conditions had a noticeable impact
on a system's evolution

= realised that the complexity of such start conditions might have a side-
effect on the patterns created

e many simply failing to survive and evolve

= a particularly interesting discovery became known as the R Pentomino
configuration

* Richard Guy, an associate of Conway, became fascinated with this particular
configuration

= Guy tested their defined rules for more than a hundred generations
e started to observe various patterns emerging

= a regular mix of shapes and patterns emerging
» Guy noticed that his shapes appeared to moving, effectively walking across the board

* he exclaimed at this discovery,

Look, my bit's walking

= Poundstone, W. Prisoner's Dilemma. Touchstone. New York. 2002.

= Guy continued to test and work on this configuration
 until he was able to get this pattern to actually walk across the room

e and then out the door...

= Guy's discovery became known simply as a glider

Image - Systems and Evolution

R-Pentomino

R Pentomino

Image - Systems and Evolution

glider evolution

= interactive demo - glider

http://conwaylife.com/wiki/Glider

Games and Dynamics

systems and evolution - examples

= such simple emergent systems demonstrated
 benefits and application of simplicity in rules and patterns

e their ability to evolve into life-form style patterns

= such systems had the potential to evolve and develop with each generation

e particularly interesting and useful to us as game designers

= may start to add such techniques to help make our games

» more redlistic, evolving, and unpredictable for our players...

= example games using these techniques include:
e Black and White
e Grand Theft Auto (v3 onwards)
e Halo
o Oddworld: Munch's Oddysee
e The Sims

Games and development
quick exercise
A quick exercise to consider evolution in systems,

= Traveling Salesman Problem
= evolution of simple systems
= swarm/hive intelligence

® jnteraction in systems

Then,

= consider the above, and how they might interact in a system to evolve an
optimal solution to a problem

= consider application of such simple systems and evolution in a game
environment

Video - Algorithms and Evolution

Algoritmos BBC

Algorithms and evolution starts at 31:20 minutes into
the video.

Source - Algorithms, YouTube

https://www.youtube.com/watch?v=Q9HjeFD62Uk&index=2&list=PLEYdfD3Pd0Xovamy5A5OR3y8uZqtehkH3
https://www.youtube.com/watch?v=Q9HjeFD62Uk
https://www.youtube.com/channel/UC8FusGS_pCUE2EUN-9pQaFQ

Demos

pygame collision detection - basic
collisionsprites|.py
collisionsprites2.py

pygame collision detection - better
collisionsprites3.py

pygame sprites

basicsprites4.py

basicsprites5.py

basicsprites6.py
graphicssprites|.py

pygame - Game | Example
shooterO0.l.py

shooter0.2.py

shooter0.3.py

shooter0.4.py

shooter0.5.py

Game notes

Pygame
sprites-more-objects.pdf
sprites-relative-objects.pdf
sprites-collision-detection.pdf
graphics-and-sprites.pdf

sprites-collision-detection-better.pdf

Resources

Huizinga, J. Homo Ludens: A Study of the Play-Element in Culture. Angelico
Press. 2016.

Poundstone, W. Prisoner's Dilemma. Touchstone. New York. 2002.

Salen, K. & Zimmerman, E. Rules of Play: Game Design Fundamentals. MIT
Press. 2003.

Conway and Life Patterns
LifeWiki

Richard Guy

Glider

Various

BFXR

Homo Ludens

Open Game Art

SFXR

http://conwaylife.com/wiki/Main_Page
http://conwaylife.com/wiki/Richard_Guy
http://conwaylife.com/wiki/Glider
http://www.bfxr.net/
https://en.wikipedia.org/wiki/Homo_Ludens
https://opengameart.org/
http://www.drpetter.se/project_sfxr.html

Videos

= Algorithms - YouTube

https://www.youtube.com/watch?v=Q9HjeFD62Uk&index=2&list=PLEYdfD3Pd0Xovamy5A5OR3y8uZqtehkH3

